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1 Introduction

Over the last four decades, interest rates across the developed world have starkly declined.

Low interest rates, together with low output growth following the Great Recession of 2009,

have evoked, for some, the possibility of “secular stagnation,” a term coined by Hansen (1939)

to describe a persistent period of low investment, employment, and growth. Summers (2015)

and Gordon (2015) argue for the relevance of Hansen’s concept from two angles: demand-

side—an increase in demand for savings arising from changing demographics (Auclert et al.,

2021, Eggertsson et al., 2019) or growing inequality (Auclert and Rognlie, 2017, Mian et al.,

2021)—and supply-side—arising from a decline in the ideas and dynamism that have fueled

the economic growth of the last half-century. A complementary idea is that of a “global

savings glut” (Bernanke, 2005, Caballero et al., 2008): there is too great a supply of savings,

mainly from patient investors outside the United States, compared to demand arising from

the need to fund productive activities (ideas for which may be lacking).

But is a greater desire for savings, in fact, underlying the decline in interest rates? On

some level, the link appears too obvious to be worth questioning. Yet any explanation

based on a greater desire for savings runs into a significant problem when one also considers

evidence from equity valuations and from capital investment. A decline in interest rates is,

definitionally, equivalent to an increase in bond prices. A greater desire for savings should

have raised stock prices to a similar degree as bond prices, but it did not. Likewise, a

savings glut should have resulted in an investment boom, but the rate of capital investment

has declined. From the point of view of the literature on increased desire for savings, low

interest rates, and low growth, the behavior of equity valuations and firm investment is a

puzzle. In response to this puzzle, Farhi and Gourio (2018) jointly consider growth, interest

rates, and stock valuations in a neoclassical growth model that allows for rare disasters

(Barro, 2009, Gourio, 2012). They argue that a substantial increase in the risk of rare

disasters is necessary to jointly reconcile the level of interest rates and stock prices.
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While Farhi and Gourio (2018) succeed in accounting for the joint behavior of stock prices

and interest rates, an explanation based on increased fears of a disaster runs into its own

problems. First, fears of rare disasters should be reflected in option prices, and specifically

the VIX. While the VIX varies over time, its average level in the first and second half of our

sample is almost exactly the same. Second, an explanation based on rare disasters is fragile

because it also rests on assumptions about the elasticity of intertemporal substitution (EIS).

Suppose that some underlying force were to be driving the risk of rare disasters upward. In

an economy in which the EIS is above one, that force will drive valuations down; but if the

EIS is less than one, it will cause valuations to rise, deepening the puzzle. Moreover, in a

production model, rising disaster risk and an EIS below one counterfactually imply rising

investment and growth. One could reverse the directionality, assuming a decrease in the risk

of rare disasters, but this simply highlights the fact that there is no reason in the first place

to believe disaster fears have increased.

We therefore propose a different explanation, one based on a decline in the risk of

sovereign default. Greater trust in the sovereign’s ability and willingness to repay debts

could well have driven the decline in interest rates spanning centuries (Ferguson, 2018).

Most recently, it is likely that reduced risk of default manifests through reduced inflation

expectations. Indeed, there is substantial evidence for a steady decline in inflation expecta-

tions, spanning the 30 years over which interest rates have declined. Evidence from options

markets suggests that inflation expectations became “anchored” in the twenty-first century—

that is, investors did not fear either very high or very low inflation (Reis, 2020). When one

takes this evidence into account, it is not difficult to jointly explain the decline in interest

rates and the stability of stock valuation ratios. Because the true real rate has not declined

as much, valuation ratios rise less, and there is no need to assume a large increase in the

probability of a rare disaster to explain the evidence.

One may wonder: if it is simply inflation expectations that have declined, why is it

that measured real rates, namely nominal rates minus ex post realized inflation, have also
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declined? This apparent disconnect disappears if one accounts for inflation risk, the risk

that the price level rises during recessions or depressions. Indeed, if inflation were perfectly

forecastable, then a change in inflation expectations should not impact ex post real rates.

However, inflation, or the lack thereof, can come as a surprise. A decline in inflation risk

will lead investors to require a lower premium to hold nominal securities. Interest rates will

decline if this premium declines, even if measured in real terms ex post. This effect is more

pronounced if investors fear inflation that, in sample, does not occur. From the point of view

of cash flows, and given that the sovereign has control over the money supply, inflation risk

is essentially risk of default (Barro, 2006). A decline in inflation risk is thus a decline in the

probability of default, and may even affect rates on securities that are said to be inflation-

protected. Our first contribution is to show that a model with rare disasters and a decline

in inflation risk can explain the decline in interest rates and the stability of valuations.

We find direct support for declining inflation risk in the data. First, we compare returns

on nominal and inflation-indexed bonds. Absent an inflation risk premium, average real

returns on nominal and inflation-indexed bonds should be identical. However, we show

that, in the 1980s and 1990s, inflation-adjusted returns on U.K. nominal bonds were almost

twice as high as the corresponding returns on inflation-linked bonds. This large premium

disappeared in the twenty-first century, as our model predicts. Second, we document evidence

of declining inflation risk from survey expectations and from the changing correlation between

inflation and growth. This latter evidence is consistent with recent findings that the once-

positive correlations between inflation and the output gap (Campbell et al., 2020) and bond

and stock returns (Campbell et al., 2017) became negative in the 2000s. Finally, because

sovereign risk depends on institutions that have altered substantially over the centuries, this

explanation could account for the striking fact that current rates are low, not just relative

to the last 40 years, but to the last 400 years (Schmelzing, 2020).

We therefore first account for the joint behavior of interest rates, inflation expectations,

and stock prices assuming an endowment economy. However, there is more in the puzzle
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than an endowment framework alone can address. Just as the joint behavior of equities and

interest rates constitutes a puzzle, so too does the behavior of investment and interest rates.

The same increased desire to save should have led to an investment boom, and yet, in the

data, investment declined, potentially contributing to the decline in growth. An endowment

economy cannot speak to the determinants of investment and growth. We therefore broaden

our inquiry by nesting our mechanism within a neoclassical growth model. We realistically

allow for the existence of cash in such a model, implying a zero lower bound: if agents can

always costlessly transfer wealth across periods, there is no need to pay to do so with a

negative nominal interest rate.1 When expected inflation and risk of inflation are low, cash

emerges as an inventory technology, which rivals productive capital investment. Our second

contribution is to show that low default risk amplifies forces lowering real interest rates such

as increased patience and lower productivity, leading to yet lower growth and lower interest

rates than otherwise. Our model therefore formalizes a notion of a deflationary trap that

quantitatively accounts for the data.

While cash is one interpretation of money, so is sovereign debt, provided it is riskless

(Reis, 2022). The role of government taxing and spending as a riskfree means of transferring

resources over time is, for example, at the center of the analysis of Blanchard (2019).2 When

real interest rates are above the zero lower bound, or when default risk is present, cash in all

its forms (including debt) is in zero net supply. At the zero lower bound, government debt and

cash are in positive net supply, and are part of the wealth calculation in the economy. The

government has an effective monopoly on the ability to create an inventory asset, similarly

though not identically to the idea that government bonds could create liquidity services

1The theory of cash as inventory dates to Baumol (1952), who applies an inventory control analysis to
the theory of money. Money as inventory also accords with the “social contrivance of money,” as proposed
by Samuelson (1958), which asserts that money can be used to obtain the socially optimal allocation in an
overlapping generations framework in which the storage of consumption goods is impossible.

2Blanchard (2019) argues that this kind of intertemporal resource transfer is optimal when the riskfree
rate falls below the growth rate of the economy (r∗ < g). We argue that it becomes optimal through
inventory at the zero lower bound (r∗ < 0). Blanchard sets g = 0, so the intuition in his paper is identical.
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(Barro, 1974). As further support for our analysis, we show that broad measures of cash

have increased during the period in question. We emphasize that, though our model accounts

for an increase in cash, it does not rely on any assumptions regarding the need for liquidity

services or for a special role for safe assets.

The remainder of this paper is organized as follows. In Section 2, we briefly summarize the

empirical evidence. Section 3 considers the ability of an endowment economy to match this

evidence, either with changes in the probability of disaster, or changes in the probability

of default. In Section 4, we solve the model with an inventory technology and show its

implications for investment and growth. Section 5 concludes.

2 Summary of the data

Panel A of Figure 1 shows nominal government rates in a seven-century-long dataset collected

by Schmelzing (2020). Interest rates are highly volatile, as Jordà et al. (2019) emphasize.3

Periods of extreme spikes, and also low rates, occurred around the American Revolution,

Napoleonic Wars, and World War II, reflecting a tension between an increase in risk of

sovereign default and precautionary savings around disasters. High rates in the 1970s and

1980s clearly stand out. Nonetheless, the figure shows a steady decline. Panel B shows

the Bank of England lending rate starting from 1700, from the start of when the series was

available. Only in the very most recent period did this rate reach a zero lower bound.

Figure 2 narrows in on the last forty years, the focus of much of the literature. The

federal funds rate in the U.S. declined sharply from 10% to 2% (Panel A).4 On the other

3Jordà et al. (2019) note that prior observations of a real rate of zero are not unusual. However, these
are observations after subtracting ex post realized inflation, not ex ante inflation-adjusted yields. While it is
true that both returns are zero from an investor’s perspective, one was a realization of zero because of high
inflation, whereas the other is an expected value of zero.

4In our quantitative model, we will focus on the one-year nominal yield. Notably, the literature studying
monetary policy shocks and real interest rates finds that the secular decline in short-term rates has also
shown up in long-term yields (Bianchi et al., 2022, Hillenbrand, 2024). For example, the 30-year yield fell
by the same amount since the mid-1980s as the federal funds rate.
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Figure 1: Nominal government rates

Panel A shows a five-year moving average of long-term nominal sovereign yields in the United Kingdom,
Holland, Germany, Italy, and the United States from 1311–2018. The solid black line represents an average
of all of the plotted series. Yields are from Schmelzing (2020) and are in annual terms. Yields come from a
variety of archival, primary, and secondary sources. Panel B shows the nominal lending rate for the Bank of
England expressed in annual terms.
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hand, the price-dividend ratio has gone from around 20 to 50, implying a dividend yield

of approximately 5% going to 2%—a smaller decline (Panel B). The last row of Figure 2

displays the decline in the investment-capital ratio (Panel C) and real GDP growth (Panel

D) since the 1980s. Investment as a percentage of the capital stock went from an average of

7.7% to 6.9%, while real GDP growth declined from an average of 3.7% to 1.9%.

3 Endowment economy

We first turn to a standard endowment economy with a representative agent. To interpret

the secular decline in interest rates, we calibrate the model separately to two sample periods,

1984–2000 and 2001–2021. We identify the year of this structural break (2001) by conducting

a break test on the time series of one-year inflation-adjusted Treasury bill yields. Details can
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Figure 2: Various data moments, United States from 1984–2018

The figure shows the effective federal funds rate (shown in annual percentage points), the annual price-
dividend ratio for the United States on the value-weighted CRSP index, the investment-capital ratio, and
the annual real GDP growth rate for the United States.
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be found in Appendix B. This is the same breakpoint used by Farhi and Gourio (2018), who

perform a similar analysis; it is also consistent with evidence from Campbell et al. (2020),

who find a structural break in the relationship between GDP growth and inflation in 2001.

While this approach of comparing sample averages means that certain features of the data

(such as high-frequency volatility of prices and interest rates) remain outside the scope of the

analysis, it allows us to consider the possibility of long-run unforeseen structural changes.

Farhi and Gourio assume a neoclassical growth model. We will return to such a model in the
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next section, but for the analysis at hand the extra degree of complication is not necessary.

As far as prices and interest rates are concerned, and in this i.i.d.-growth-rate setting, the

production model and the endowment model yield the same predictions.

The aggregate endowment evolves according to

Ct+1 = Cte
µ(1− χt+1), (1)

where χt+1 represents an occurrence of rare disaster:

χt+1 =

 0 with probability 1− p

η with probability p,

(2)

for η ∈ (0, 1). Note that p represents the probability of a disaster and η its magnitude.

We assume the representative agent has Epstein-Zin-Weil recursive preferences (Epstein and

Zin, 1989, Weil, 1990) with risk aversion γ, elasticity of intertemporal substitution (EIS) ψ,

and discount factor β. Let Wt denote the representative agent’s wealth, here assumed to be

the cum-dividend value of the consumption claim. Let RW,t+1 ≡ Wt+1/(Wt −Ct) denote the

return on wealth from time t to t+ 1. The stochastic discount factor (SDF) then equals

Mt+1 ≡ βθ

(
Ct+1

Ct

)− θ
ψ

Rθ−1
W,t+1, (3)

for θ ≡ (1− γ)/(1− 1/ψ).

In this section, we assume that the aggregate stock market equals aggregate wealth (ex-

dividend) and that the ex post real return on the Treasury bill equals the riskfree rate. We

relax these assumptions in the sections that follow. In equilibrium, RW,t+1 must satisfy:

Et [Mt+1RW,t+1] = 1. (4)
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Our assumptions and the endowment and preferences imply a constant price-dividend ratio

(Wt−Ct)/Ct, which we denote by κ. Standard arguments (see Appendix C) then imply that

κ =

βe(1−
1
ψ
)µ

[
1 + p((1− η)1−γ − 1)

] 1
θ

1− βe(1−
1
ψ
)µ

[
1 + p((1− η)1−γ − 1)

] 1
θ

. (5)

Given the return on the wealth portfolio, the Euler equation provides the return on the

one-period riskless bond:

logRf = − log β +
1

ψ
µ− log(1 + p((1− η)−γ − 1))

+

(
θ − 1

θ

)
log(1 + p((1− η)1−γ − 1)). (6)

Equations (5) and (6) constitute a system of two equations in two unknowns, p and β.

Combining (5) and (6) gives the equity premium:

logEt[RW,t+1]− logRf = log(1− pη) + log(1 + p((1− η)−γ − 1))

− log(1 + p((1− η)1−γ − 1))

≈ pη((1− η)−γ − 1)

where the approximation is accurate for small p.

3.1 Increasing disaster probability

We calibrate this model using measured growth rates of real per capital consumption µ =

0.0257 from 1984 to 2000 and µ = 0.0148 from 2001 to 2021.5 For comparability with Farhi

5This is obtained from series A794RX0Q048SBEA from FRED Economic Data hosted by the St. Louis
Federal Reserve.
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and Gourio, we first show results for their calibration, corresponding to γ = 12, ψ = 2,

and a disaster size η = 0.15. We find similar results, in that we match the data using a

discount factor (β) of 0.969 in the early period and 0.982 in the later period, and a disaster

probability (p) of 2.25% in the early period and 4.50% in the later period. We thus arrive at

our first result: matching the combined stability of valuations and the decrease in riskfree

rates requires a large increase in the disaster probability, even after accounting for decreased

growth.6

It may seems surprising that we require such a large increase in p. After all, the interest

rate did fall due to decreased growth and increased patience. Moreover, a decrease in growth

moderates the interest rate effect on stock prices, leading to a price-dividend ratio lower than

it would have been, which is precisely the problem we are trying to solve. As it happens,

the reason we require such a large increase is that, like the growth rate, the increase in

disaster probability has two offsetting effects which are cancelled out when the elasticity

of intertemporal substitution (EIS) equals unity. The EIS acts as a free parameter in this

explanation. While there is no fundamental reason to believe that the EIS should differ

greatly from the inverse of risk aversion (the former governs the desire of the agent to smooth

across time, the latter to smooth across states), Farhi and Gourio (2018) follow others in

the literature in assuming a high value of risk aversion and a high EIS in order to match the

equity premium without other counterfactual implications. For an increase in disaster risk

to be the explanation, not only must the change be large enough to overcome the offsetting

effects, but it is essential to assume that the EIS is above unity.

To illustrate this point, Panel C of Table 1 sets the EIS to 1/2 rather than 2, while keeping

everything else the same. Lower growth and a rising disaster probability cause valuations

to increase, not decrease. Matching (5) and (6) with p and β still requires an increase in p

6 van Binsbergen (2020) states the puzzle as follows: given the decrease in interest rates and the duration
of the stock market, one would have expected a much larger capital gain if the risk premium were to remain
constant.
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Table 1: Accounting for the data with a change in disaster probability

This table shows parameters necessary to match the data, assuming an endowment economy with rare
disasters and no inflation risk. Unless otherwise noted, we take average consumption growth from the data,
and calibrate the disaster probability p and the subjective discount factor β to fit average interest rates and
the price-dividend ratios in each of two sample periods. Because there is no inflation or inventory storage
in the model, the riskfree rate proxies for the ex post real yield on the Treasury bill (Treasury bill yield
minus realized inflation, or “inflation-adjusted Treasury yield”), and the wealth-consumption ratio proxies
for the price-dividend ratio on the aggregate market. The table shows how p and β change depending on
assumptions regarding elasticity of intertemporal substitution (EIS) and on growth. Treasury yields in the
data, and parameters in the model, are annual.

Values

Parameter 1984–2000 2001–2016

Panel A: Moments in the data

Price-dividend ratio κ 42.34 50.11

Inflation-adjusted Treasury yield yb 0.0279 -0.0035

Panel B: γ = 12, EIS = 2, η = 0.15

Average consumption growth µ 0.0257 0.0157

Discount factor β 0.969 0.982

Probability of disaster p 0.0225 0.0464

Panel C: γ = 12, EIS = 0.5, η = 0.15

Average consumption growth µ 0.0257 0.0157

Discount factor β 0.993 0.977

Probability of disaster p 0.0225 0.0464

in the second period. However, β must now decline, implying that investors would need to

have become less patient, not more, contradicting the demand-side intuition for the decline

in interest rates (Summers, 2015).

3.2 Did the equity premium rise?

We now ask whether the equity premium did in fact rise. The literature studying long-run

variation in the equity premium generally comes to the conclusion that the equity premium
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has declined over the postwar period, including from the first to the second periods that are

our focus (Avdis and Wachter, 2017, van Binsbergen and Koijen, 2010, Fama and French,

2002, Lettau et al., 2008). This evidence contradicts a rise in disaster risk.

Options markets are another place to look for evidence of an increase in the equity

premium (Barro and Liao, 2021).7 Virtually any explanation for an increase in the ex ante

equity premium involves an increase in risk or risk aversion. While it is possible that such risk

is not realized in sample, option prices incorporate the probability market participants assign

to such risk materializing. Figure 3 shows the VIX, reported by the Chicago Board Options

Exchange (CBOE). The VIX is the risk-neutral expectation of quadratic volatility, which is

tightly tied to the equity premium. While the VIX is highly volatile at high frequencies, the

average level of the VIX is remarkably stable between the two periods: equal to 21 in both.

It is hard to reconcile this stability with a secular increase in the equity premium.

3.3 Sovereign default risk

A standard proxy for the equilibrium riskfree rate is the real return on government debt;

however, this return is not necessarily riskless, as the government can default either outright

or through inflation. We now price this claim by including partial default that co-occurs

with disasters.8 A decline in default risk can explain the secular trends in riskfree rates and

valuation ratios since 1980 without appealing to rising disaster risk.

Suppose, in a disaster, creditors lose a fraction λη relative to the face value of the bond.

That is, a bond issued at time t pays 1−Lt+1 at time t+1, where loss Lt+1 = λχt+1 represents

a loss of zero if there is no disaster, and λη if a disaster should occur. If λ = 1, the loss to

creditors is equal, in percentage terms, to the decline in consumption η. If λ = 0, then the

7According to our argument, one cannot measure the risk premium from the difference between equity
and bond returns, because the decline in the inflation risk premium on bonds will falsely suggest a rising
excess return. Our evidence from options markets is immune to this concern.

8See Appendix C.3 for more detailed derivations.
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Figure 3: Chicago Board Options Exchange Volatility Index (VIX)

The figure plots the VIX series from 1986 to 2020 from the Chicago Board Options Exchange (CBOE).
The long dashed red line is the average VIX from the beginning of the series to the end of the year 2000.
The long dashed blue line shows the average VIX since the beginning of 2001. Estimated averages in both
samples are plotted with a two-standard-error confidence interval where standard errors are adjusted for
heteroskedasticity and autocorrelation (Newey and West, 1987) with two lags on the monthly VIX.

bond is riskfree. Let Qt be the price of the defaultable bond. In equilibrium,

Qt = Et [Mt+1(1− Lt+1)] . (7)

Let yb,t denote the continuously-compounded yield on this bond. That is, yb,t ≡ − logQt.

Because the yield is constant, we simply refer to this quantity as yb. Note that the yield
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equals the return in the case of no default. Evaluating (7) implies:

yb = logRf+log (1 + p((1− η)−γ − 1))−log (1 + p((1− λη)(1− η)−γ − 1)) ≈ logRf+pλη(1−η)−γ

(8)

where Rf is the gross riskfree rate from (6). For λ > 0, the yield exceeds the riskfree rate.

Letting Rb,t+1 ≡ (1 − Lt+1)/Qt denote the return on the defaultable bond, the expected

return is

logE[Rb,t+1] = logRf + log(1− pλη) + log (1 + p((1− η)−γ − 1))

− log (1 + p((1− λη)(1− η)−γ − 1))

≈ logRf + pλη((1− η)−γ − 1). (9)

The term pλη((1− η)−γ − 1) is the default risk premium. Notice that the yield yb equals

yb = logE[Rb,t+1]− log(1− pλη) ≈ logE[Rb,t+1] + pλη, (10)

and exceeds both the riskfree rate and the expected return on the bond when λ > 0. In

a sample in which no disasters occur, the average ex post real return on the bond will

correspond to the yield (8), not the expected return (9).

We have thus far been agnostic as to the means of default. Inflation offers one such

means. To make the connection precise, let Πt denote the price level and ∆πt = log(Πt+1/Πt)

inflation. A capital loss of Lt+1 through default is equivalent to an inflation of 1/(1−Lt+1).

We also allow for inflation to occur outside of disasters. To summarize, the price level follows

the process

Πt+1 = Πte
qt+σπϵt+1(1− Lt+1)

−1, (11)

where qt+σπϵt+1 represents non-disaster growth in the price level (see Section 3.7 for further
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detail). Now consider the nominal price on the nominal bond, denoted Q$
t . In equilibrium,

Q$
t = Et

[
Mt+1

Πt

Πt+1

]
. (12)

Let y$b,t denote the continuously-compounded yield, namely y$b,t ≡ − logQ$
t . Finally, let

R$
b,t+1 ≡ 1/Q$

t = ey
$
b,t denote the nominal return on the nominal bond. Because the only

component of inflation that is priced is the default Lt, and because the price Qt, yield yb,

and return Rb,t+1 assumed default, the only difference lies in expected inflation.9 That is,

Q$
t = Qte

−qt and y$b,t = yb + qt. Moreover, the expected return on the nominal bond, in real

terms equals

Et

[
R$

b,t+1

Πt

Πt+1

]
= Et[Rb,t+1].

The ex-post inflation-adjusted rate in a sample without disasters (from t0 to T ) equals

1

T − t0

T∑
t=t0

y$b,t −∆πt+1 =
1

T − t0

T∑
t=t0

yb + qt − qt + σ⊤
π ϵt+1 = yb. (13)

This is the model counterpart of the average Treasury bill yield minus average realized

inflation over the sample period of interest. The model with inflation differs from that of

outright default in one respect: it allows for λ < 0, corresponding to the ability of nominal

bonds to hedge inflation.

We now calibrate the model, keeping p constant at 2.25% (the calibrated value from 1984–

2000), and allowing λ to vary. The form of Table 2 is the same as Table 1. We first show the

price-dividend ratio and the inflation-adjusted Treasury yield for the two sample periods.

Note that the model with inflation implies a different, and more precise, interpretation of the

inflation adjusted-Treasury yield. The model counterpart is (13), whereas in the previous

model it was simply the riskfree rate.

9In Section 3.7 we allow shocks to inflation to be priced as well; we show this makes very little difference
to the conclusions.
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Analogously to the previous exercise, we fix all parameters other than consumption

growth (which is taken from the data), patience β, and the inflationary default parame-

ter λ. A higher λ corresponds to greater exposure, and hence a higher inflation premium. In

line with the disaster literature, we consider a lower value of risk aversion γ (equal to 5) and

a correspondingly larger disaster (a consumption decline of 30%). This calibration forms our

benchmark; however, our points are qualitatively similar with higher γ and smaller disas-

ters. We first consider the case of EIS equal to 2. We first note that the model is capable of

matching the data, assuming a λ such that 13% of the bond value is lost in disasters in the

first sample and essentially none in the second. Crucially, it does so with a smaller increase

in the discount rate β. Rather than 1.3 percentage points, β increases by 0.9 percentage

points. This is because the model has a fundamentally different explanation for the decline

in the interest rate, namely the reduced inflation premium. Indeed, the inflation premium

(which we can calculate using (9)), is 1.4 percentage points in the first half of the sample,

falling to negative 40 basis points in the second half, accounting for the majority of the

decline in the observed interest rate.10 An additional 35 basis points of the 3.5 percentage

points reported in Panel A arises from the fact that expected disasters did not occur (second

term in (10)), leaving the remaining percentage point to come from a decrease in the real

rate, driven by a combination of lower growth and higher patience.

Panel C assumes an EIS equal to 1. Note that, unlike the previous explanation, the model

does not depend on an EIS greater than 1. Parameters in Panel C are similar to those in

Panel B, with an even smaller rise in β. When the EIS is equal to one, the decline in growth

10Not surprisingly, this is a larger decline than that estimated using models assuming stationarity (see
Favero et al. (2024) for a discussion of the role of the stationarity assumption in interest rate modeling). For
instance, Haubrich et al. (2012) assume stationarity and Gaussian shocks, implying that the inflation risk
premium depends directly on the variance of inflation. They find an average premium of 0.4%. Greenwald
et al. (2022, 2024) find similar results. Our model differs from these both in that we allow for a structural
break and because we allow for rare inflation events, implying not only that true volatility is difficult to
capture in-sample, but also that the premium does not depend solely on this volatility. That said, our
estimation implies that, if averaged across the samples, the premium is 0.5%, which is not far from these
prior estimates.
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Table 2: Accounting for the data with inflationary default risk

This table shows parameters necessary to match the data, assuming an endowment economy with rare
disasters and inflationary default. We take average consumption growth from the data in each sample. We
calibrate the discount factor β and the decline in bond value λη to match the average price-dividend ratio and
the average inflation-adjusted Treasury bill, assuming no disasters. We vary the elasticity of intertemporal
substitution (EIS) as shown. We assume the disaster probability equals 2.25%, its benchmark value in
Table 1. Parameters and yields are in annual terms.

Values

Parameter 1984–2000 2001–2021

Panel A: Moments in the data

Price-dividend ratio κ 42.34 50.86

Inflation-adjusted Treasury yield yb 0.0279 -0.0069

Panel B: γ = 5, EIS = 2, η = 0.3

Average consumption growth µ 0.0257 0.0157

Discount factor β 0.973 0.981

Fraction of bond value lost λη 0.129 -0.044

Model-implied riskfree rate rf 0.012 -0.002

Panel C: γ = 5, EIS = 1, η = 0.3

Average consumption growth µ 0.0257 0.0157

Discount factor β 0.977 0.981

Fraction of bond value lost λη 0.129 -0.044

Model-implied riskfree rate rf 0.012 -0.002

now does not affect the price-dividend ratio (though it still affects the riskfree rate). Thus β

now need increase by a mere 0.4 percentage points, because there is no need to counteract the

effect of lower growth on the price-dividend ratio, and because growth also has a larger effect

on the interest rate. To summarize, changes in λ help explain the decline in observed interest

rates, rendering the assumption of a decline in disaster premia unnecessary. This explanation

is more robust, in that it does not require a knife-edge combination of hard-to-observe risk,

patience, and willingness to substitute across time.
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3.4 Evidence for declining inflation risk

Contrary to the leading alternative explanation, independent evidence points to a decrease

in inflation risk. A natural first place to look is at differences in yields on inflation-indexed

and nominal bonds (sometimes called break-even estimates). The average difference in yields

(break-even inflation) will combine both expected inflation and the inflation risk premium.11

It also assumes that indexation is perfect, and that all default occurs with inflation. If either

of these assumptions are violated (as they likely are for reasons discussed below), then this

difference will understate the sovereign default premium, and potentially any decline.

Given that Treasury Inflation-Protected Securities (TIPS) were first introduced in 1997

and did not have sufficiently liquid markets to measure riskfree returns until around 2004

(Fleming and Krishnan, 2004), these data are not available over our full sample. Index-linked

Gilts from the U.K., on the other hand, have traded since the early 1980s and provide the

ideal asset to examine this difference over the last four decades.

Panel A of Figure 4 shows the difference between the inflation-adjusted yield on the

one-year U.K. government nominal bond and the yield on five-year index-linked Gilts. The

figure shows that, in the first sample half, this difference was significantly positive and large—

almost 2 percentage points, nearly as large as the average Gilt yield itself. In the second

sample half, in contrast, this excess return is on average zero, consistent with our estimate of

no default risk. This suggests an economically large decline in the inflation risk premium.12

A possible concern with this measure is that it compares bonds of different maturities.

It may, for example, be that differences in these bond returns arise from changes in the

term structure. Panel B addresses this concern by calculating the excess real return for five-

year nominal bonds and subtracting (annualized) five-year realized inflation. The result is

11Using the terminology of Section 3.3, the difference measures y$b,t − logRf .
12Moreover, a portion of the inflation-linked Gilt decline is likely attributable to the outsized demand for

index-linked gilts from pension funds stemming from regulatory pressure in the late 1990s and early 2000s
(National Association of Pension Funds, 2011). This means that the decline in index-linked Gilts could be
artificially larger than the decline in the true riskfree rate.
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Figure 4: Excess real returns on nominal bonds over inflation-indexed bonds

The figure shows the inflation-adjusted yields on nominal U.K. government bonds in excess of the five-year
gilt yield. In Panel A, the solid line is the one-year inflation-adjusted nominal bond yield (the yield less
realized inflation over the next year) minus the contemporaneous five-year gilt yield. Panel B is the same
difference for the five-year nominal bond yield less the next five years of inflation (annualized). Dashed and
dotted lines represent sample means with two-standard-error confidence intervals.

A. One-year nominal bond minus gilt B. Five-year nominal bond minus gilt

essentially identical: five-year nominal bonds earned a premium of over 2 percentage points

in the 1980s and 1990s, and no premium in the 2000s and 2010s. Parameter values in Table 2

imply a strikingly similar decline of 2.5 percentage points, validating our model calibration.

As described above, there are also reasons that yield-based break-even estimates of the

sovereign default premium may be too low. The calculation above, for example, assumed that

all default takes place through inflation. Non-zero prices on credit-default swaps suggests

otherwise (Chernov et al., 2020).13 Even if one were to relax this assumption (and allow an

additional term for outright default), there remains two reasons why the estimate may be

too low: (1) inflation indexation is inexact (or, more precisely, errors may be correlated with

factors investors care about, such as inflation itself) and (2) recovery rates may be lower

on inflation-indexed bonds. Indeed, TIPS explicitly do not index for deflation. Anderson

13Some of the premium for default may reflect the probability of a temporary halt in payment (technical
default), whereas the premium (9) assumes missed payments are not made at a later date (Bomfim, 2022).
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and Sleath (1999) discuss errors in inflation indexation for Gilts. In response to a recent

uptick of inflation, the government of Canada has discussed halting the issuance of inflation-

linked securities due to concerns regarding the size of the potential payouts (Czitron, 2022).

Dittmar et al. (2024) provide evidence that yields price in greater default risk for TIPS than

nominal Treasury bonds. Indeed, it is not known how investor expectations of indexing, and

thus prices on inflation-indexed bonds, would behave in a setting with very high unexpected

inflation.

Another place to look for evidence of a declining inflation risk premium is the sample

correlations between inflation and consumption growth and between bond and stock returns.

Ideally, to capture changes in λ, one would directly observe behavior during disasters, and

use these observations to construct a correlation that is disaster-specific. That is the literal

interpretation of the model in the previous section. However, both expected and realized

behavior during disasters is hard to observe due to there being so few of them, and to a lack

of a means to elicit expectations within them. Absent these ideal data moments, we look

directly at realized inflation and consumption growth, with the view that the line between

a downturn and disaster is ultimately arbitrary. Figure 5 shows the result. The recession

in the early 1990s is clearly accompanied by inflation, whereas the boom of the late 1990s

by deflation. However, the financial crisis was deflationary. A positive inflation-growth

correlation is also consistent with the recent COVID recession, which saw deflation during

the brief 2020 contraction followed by inflation and positive growth. In the first sample, the

correlation is negative at −0.4; in the second sample it is positive at 0.2.

Also in the spirit of the model is the change in bond-stock correlations. Unexpected

inflation that is negatively correlated with consumption will cause bond and stock returns to

be positively correlated; unexpected inflation that is negatively correlated causes the reverse.

Stock returns are driven in part by unexpected changes in dividends, which are correlated

with consumption. Likewise, bond returns are negatively correlated with realized inflation.

Indeed, Campbell et al. (2017) and Campbell et al. (2020) observe a substantial shift in
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Figure 5: Consumption growth and inflation in the United States

This figure shows one-year realized consumption growth and the one-year realized inflation rate from 1984
to 2019. The vertical line separates the sample periods at the beginning of 2001.
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the bond-stock beta, going from positive to negative over the two halves of the sample.14

This relies on the same interpretation as the previous paragraph on changing correlations

in downturns that may fall short of disasters. However, a changing bond-stock correlation

also sheds light on what agents expect should disasters occur. An increase in the probability

of disaster will cause both bond and stock prices to fall—assuming that inflation occurs in

a downturn. Otherwise, bond prices will rise while stock prices fall. Thus, a change in the

correlation is powerful evidence of how investors expect inflation and consumption to behave,

which is what matters from the point of view of the model.

14Relatedly, Cieslak and Vissing-Jorgensen (2021) show that the so-called “Fed Put”—the tendency of the
Fed to reduce rates (increasing bond prices) when the stock market falls—began only in the late 1990s.
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Figure 6: Expected inflation in the United States

The solid black line shows expected inflation from the Surveys of Consumers of University of Michigan.
The dashed blue line shows the 10-year breakeven inflation rate computed from Treasury Inflation-Indexed
Constant Maturity Securities. The dashed-dotted red line shows 10-year expected inflation from the Survey
of Professional Forecasters.
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A final source of evidence for declining inflation risk comes from data on inflation ex-

pectations. Figure 6 shows a decline in inflation forecasts over four decades, leveling off

in more recent years. Thus, as inflation fears receded, the perceived risk of inflation also

receded—not only did inflation expectations decline, they also became less volatile. Indeed,

Reis (2020) finds an anchoring of inflation expectations using survey data.

One can also infer inflation risk from expectation errors. Data on one-year-ahead forecasts

from the Survey of Professional Forecasters also show that in the first sample, forecasters

consistently over-estimate inflation, whereas in the second sample, their estimates are on

average correct (Figure 7). Researchers have interpreted this difference as evidence of slow

learning due to highly persistent underlying processes (Farmer et al., 2024) or the strong pull
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Figure 7: Expected versus realized one-year inflation

The figure plots the difference between expected and realized one-year inflation, where expectations are
taken from the Survey of Professional Forecasters. The horizontal dashed lines show the average difference
in each of our respective samples along with two-standard-error confidence intervals. These averages could
be interpreted as estimates of pλη in our model, where p is the probability that a disaster occurs, and λη is
the fraction of bond value lost when a disaster occurs.

of past experience (Goetzmann et al., 2022), both of which is also in the spirit of our model.

Regardless, in the first sample, investors forecasted inflation that did not occur, whereas in

the second, they ceased to forecast inflation. This is consistent with a structural break in

which, in the first sample, inflation exhibits positive skewness (λ > 0), that vanishes in the

second (λ ≈ 0).15 Comparing estimates from Table 2 together with estimates from Figure 7

indicate that about a half of expectational “errors” are due the failure of disasters to occur.

To summarize, our model and calibration imply that the true riskfree rate and equity

15When agents predict disasters that do not occur, on average the difference between forecasted and the
measured ex post average will be Et[∆πt+1]−qt = −p log(1−λη) ≈ pλη, which is positive in the first sample
but zero in the second.
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risk premium have remained relatively stable over time, a conclusion that is consistent with

evidence from valuation ratios, which have remained relatively flat; and the VIX, which sug-

gests no substantial increase in risk. The price-dividend ratio is unaffected by inflationary

default risk. It is, however, common in the literature to use the return on the one-year gov-

ernment bond as a proxy for the true riskfree rate. Our calibration suggests that estimating

the equity premium directly using this bond return implies an increase in the measured risk

premium. In the model, this increase comes not from an increase in equity risk, but from a

decline in the risk premium on government debt.

This is not to say that riskfree rates have not declined at all. In the calibrations we

present above, the riskfree rate declines from the first sample half to the second. This is

mirrored in the data too: the yield on index-linked Gilts has also fallen. Our point is that

this decline is substantially smaller than what is reflected in declines in inflation-adjusted

nominal yields and accounting for this explains the joint evolution of valuation ratios and

bond yields.

3.5 The government’s ability to repay

Sovereign default risk has declined not just in the U.S., but across the developed world.16

At the same time, debt-to-GDP ratios have also risen. This rise might seem to suggest a

reduced ability to repay debt.

In order to make sense of the simultaneous increase in debt-to-GDP and decrease in

risk, Appendix F introduces a government budget constraint into our model. The value of

government debt equals the present value of future surpluses. This Appendix shows that

a lower risk of sovereign default is associated with higher debt-to-GDP ratios because the

discount rate on the debt is lower. This seems at odds with the intuition that investors

should reduce their expectations of repayment when the government borrows heavily. In

16Appendix E provides evidence for the decline in sovereign default risk from several countries. The results
above from the U.S. are echoed in several developed countries around the globe.
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fact, it is not, because any change in expectations of default would lead to an immediate

one-time inflationary shock that (like all changes in expectations) by definition cannot be

anticipated. Going forward, if expectations of default were revised upward, the debt-to-GDP

ratio would fall, not rise. Thus there is no contradiction between an observed increase in

debt-to-GDP ratios and decreased sovereign risk.

While the analysis in Appendix F can help make sense of the claim that debt has risen

relative to GDP, it does not help to reconcile the belief in the ability to repay with actual

government behavior, which has consisted of running deficits except for a brief period in the

1990s. Our results, however, do not deepen the puzzle in that it exists in equal measure

in the endowment economy model without default risk, since both models assume a perfect

ability to repay at all times.

While such a reconciliation is beyond the scope of this paper, we can make some points

in favor of the directional move in probabilities that are priced into assets. In the work

of Maddison (2003) that formed the basis for the original Barro (2006) paper, government

default was ubiquitous, occurring in 40% of disasters. This most likely understates the true

occurence of default, given that data availability correlates negatively with outcomes. For

example, Russia and the antebellum American South were not in Maddison’s data set.

Moreover, from the investor’s point of view, default also includes expropriation. For many

individuals in the 20th century, a safe asset was a valuable object buried in a backyard or real

estate in a foreign country, not ownership of that government’s debt. Evidence from various

sources suggest that investors believe that developed nations are more stable in general than

they used to be ( van Binsbergen et al., 2024, Pinker, 2011). It is possible that against

this violent historical backdrop, it is rational to believe that governments are more likely to

repay their debts than they were previously, and that such a belief, in and of itself creates the

situation of greater government borrowing.17 Of course, lower sovereign default risk does not

17The willingness of the U.S. government to run surpluses in the 1990s may also have played a role in
showing that surpluses are at least theoretically possible.
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imply that indebted countries do not face a very serious challenge. Rather it demonstrates

that investors have incorporated the scenario in which governments meet the challenge into

prices

3.6 The role of convenience yields

The above sections argue that the a decline in sovereign default risk is necessary to explain

the joint behavior of interest rates and equity valuation ratios. However, an alternative to

sovereign default risk would be a decline in the convenience yield. The convenience yield

hypothesis states that certain assets can act as a substitute for cash, and therefore have a

utility that goes beyond their intrinsic value. A substantial literature examines the conve-

nience yield ( van Binsbergen et al., 2022, Fleckenstein and Longstaff, 2024, Krishnamurthy

and Vissing-Jorgensen, 2012, e.g.). Like a decline in sovereign default risk, a decline in the

convenience yield would affect the Treasury bill rate (which presumably have convenience

value), while leaving equities unaffected. Specifically, suppose that the observed Treasury

return equals a sum of the traditional financial return and a “convenience” return, repre-

senting the role of Treasury securities as cash. The latter is negative. If the convenience

return has increased, then the observed Treasury return would have decreased, even if the

true riskfree rate remains constant.

The literature on the convenience yield mentions several proxies. Ideally, one would find

a proxy in which convenience could be disentangled from risk. For our purposes, which

involve finding a plausible upper bound on the effect of convenience, it suffices to examine

the spread between highly rated corporate bonds and Treasury bonds (Cieslak et al., 2024).

While this spread widened by an average of 37 basis points between the first and second

subsample, suggesting an increase in the convenience yield, the interest rates declined on

average by more than 300 basis points. Replacing the Treasury bill rate series with a highly

rated corporate debt series thus does not change our results very much: rather than a decline
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in fraction of bond value lost of 17.3 percentage points, we see a decline of 14.1 percentage

points. Thus while acknowledging that a rise in convenience may be part of the reason for

the decline in Treasury rates, it is secondary to other factors driving government bond yield

declines.

3.7 Valuation ratio and interest rate dynamics within each sample

Earlier in this section, we argued that reduced sovereign default risk is a primary driver of

the decline in interest rates over the past 40 years, and perhaps the past 400 years. Taken

in isolation, there are many possible explanations for the decline in interest rates. Jointly

considering the price-dividend ratio, the interest rate, and the growth rate considerably

narrows down the possible explanations. For example, if it is an increased propensity to save

has driven down interest rates, the price-dividend ratio would have risen to a much greater

degree than what we observe. One alternative explanation that jointly explains intrest rates,

price-dividend ratios, and growth, is an increase in rare disaster risk. We argue in Sections 3.1

and 3.2 that this is not plausible. On the other hand, a decrease in sovereign default risk

explains the full set of facts.

There are, however, additional alternative explanations. For instance, higher expected

dividend growth could have raised price-dividend ratios without any effect on interest rates.

Alternatively (or, in addition) expectations of inflation risks could have declined for reasons

other than sovereign default risk. As Figure 7 shows, inflation expectations were above

realized inflation in the first sub-sample and below in the second. This is to be expected

under our framework, however under our parameter values, inflationary disasters that did not

occur only account for half of the difference between realized and expected inflation. Finally,

and as discussed in Section 3.4, the correlation between consumption and inflation switched

signs. The last two alternative explanations are very close to our hypothesis that reduced

sovereign default risk explains the decline in interest rates, as reduced sovereign default risk
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would indeed manifest as lower expected inflation and a change in sign in the correlation.

However, it is possible that these occurred for reasons other than reduced sovereign default

risk.

For a full answer to what drives rates – whether they be short-term rates or the price-

earnings ratio (an inverse rate) over time, we turn to a generalized endowment model, which

we fit using expectations data. Specifically, we allow for Gaussian shocks to consumption, to

inflation, and to expected inflation and to dividends. We thus allow expected inflation and

expected dividend growth to vary within each period, which will allow the model to capture

changes in stock market valuations not driven by changes in discount factors or growth rates,

and changes in interest rates driven by temporary fluctuations in inflation expectations that

may not represent analysts’ forecasts of inflationary default.

First, we allow for Gaussian innovations to the aggregate endowment, allowing it to vary

within each sample. Consumption now follows the process

Ct+1 = Cte
µ+σ⊤

C εt+1(1− χt+1). (14)

where εt+1 is a four-dimensional vector of independent standard normal shocks. Second, be-

cause shocks to expected earnings are important to matching valuation ratios at the business-

cycle frequency, we also allow for a separate earnings process D, which is cointegrated with

the aggregate endowment. Following Longstaff and Piazzesi (2004) and Wachter (2005), we

define the log consumption-dividend ratio as zt ≡ log(Ct/Dt) and assume that it follows the

stationary process

zt+1 = (1− ρz)z̄ + ρzzt + σ⊤
z εt+1 − ξ log(1− χt+1), (15)

where σz and ξ represent financial leverage and allow dividends to fall by more than con-

sumption after negative shocks. Third, we allow for shocks to both expected and realized
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inflation. The price level evolves as

Πt+1 = Πte
qt+σ⊤

π εt+1(1− Lt+1)
−1, (16)

where qt follows a first-order autoregressive process:

qt+1 = (1− ρq)q̄ + ρqqt + σ⊤
q εt+1. (17)

Finally, we again assume that the fraction of the bond lost in default, λη, is a constant

within sample periods. In Appendix D, we derive closed form expressions for interest rates

and valuation ratios in this economy when the investor has a unit EIS and risk aversion γ.

To calibrate the model, we rely on data from a variety of sources. Innovations to z

are taken from analyst earnings expectations as compiled in De la O and Myers (2021).

Innovations to q are obtained from the log of the Survey of Professional Forecasters one-year

ahead inflation forecasts. Long-run expectations, covariances, and variances are estimated

using their method of moments counterpart over the full time series from 1984–2021. The

exception to this is the covariance between innovations to consumption and expected and

realized inflation. As discussed in Section 3.4, there is ample evidence that the covariance

of inflation and consumption growth changed sign after 2001.18 This is true for innovations

to both expected and realized inflation.

Figure 8 shows the time series of interest rates (Panel A) and valuation ratios (Panel B).

Two things stand out. First, the model generally succeeds at matching the inflation adjusted

interest rate within each period, though the interest rate in the data is more volatile. This

implies that three ingredients—shocks to expected inflation, changes in the covariance be-

tween inflation and consumption growth, and changes in exposure to disaster inflation—can

18While unexpected inflation that is both positively and negatively correlated with consumption could
represent sovereign default, only a decrease in the latter will cause interest rates to fall. Intuitively, an
increase in risk of sovereign default correspondes to inflation during bad times, though this is not necessarily
the case.
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explain much of the variation in interest rates over the time period we examine. Note that

we use a different interpretation for analysts forecasts than in Section 3.4, where we assume

that these forecasts represent qt + λη. Assuming this link would complicate our procedure

in that it would introduce an interdependency between qt and λη, which we back out as the

residual. If we were to assume these forecasts equaled qt + λη, the model would produce a

smaller difference in qt, thereby assigning more of a role to λ in what follows. For this reason,

identifying qt with forecasted inflation understates the effect of default risk in explaining the

time series of interest rates. Furthermore, as described in Section 3.4, declining qt may itself

arise from lower expectations of inflationary default. Again, assigning some other reason to

the decline in inflationary expectations understates our effect.

Second, the model comes close to matching the time series of valuation ratios but does

not match the overall trend from start to finish in the data. This is similar to the point

made in De la O and Myers (2021); much of the observed, short-run variation in valuation

ratios can be explained by changes in earnings expectations.19

Table 3 presents the estimates for β and λ implied by this model. Despite the fact that the

model now incorporates several additional elements, it is still necessary for λ to fall, and by

nearly as much as in Section 3.3. For example, while in Section 3.3, we subtracted out realized

inflation, if inflation expectations were to fall sufficiently, this could explain the decline

in interest rates. However, inflationary expectations do not fully explain the decline. To

reiterate the reasoning from Section 3.3, a decline in inflationary default is necessary because

a decline in real rates would lead to price-dividend ratios that are counterfactually high. The

model matches the data with a combination of a higher discount factor β (explaining some

of the decline in interest rates, and, somewhat higher price-dividend ratios), and default risk

19This method does not match the overall trend in price-earnings ratios well. Much if this is due to the
large spikes in the PE ratio during the DotCom bubble and Great Financial Crisis. These occur because
of extraordinarily large earnings growth expectations in these episodes. Because the model overshoots in
these episodes, it must undershoot in other years to match the mean. This means that β declines in this
calibration. If we were to use an alternative weighting scheme, we could get a rise in β which would allow
us to better match the trend.
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Figure 8: Model and data implied interest rate and equity valuation ratios

The figure shows the time series of interest rates and valuation ratios in the generalized endowment model.
Panel A shows the Federal Funds rate in the data and the corresponding short-term nominal bond yield in
the model. Panel B shows the ratio of price divided by current earnings from the S&P 500 in the data, and
the price-dividend ratio in the model.
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(explaining the rest of the decline). Once we include earnings expectations data, there is no

longer any evidence coming from the price-dividend ratio of a savings glut; in fact β stays

the same between the samples. Thus it is all the more necessary to have default risk fall,

even when we assume the change in sign in the covariance arises from a separate channel.

The years 2022 and 2023 have seen a rise in interest rates alongside a shock to realized

inflation, with the Federal Funds Rate averaging 4.6%.20 While the model over-predicts the

Federal Funds rate in 2021, it does not account for a Federal Runds rate of nearly 5%. A

natural question is what, among the various interest rate channels that we identify, could have

caused this reversal. Given the sharp rise in inflation, one possibility is expected inflation,

assuming this does not itself arise from an increase in λ. Expected inflation did rise, but only

by 1.5 percentage points between 2021 and 2022. A second possibility is higher expected

consumption growth. However, expected one-year ahead GDP growth averaged only 1.2% in

20We did not calibrate to these years because we do not have earnings expectations data that would allow
up to calibrate the state variable z.
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Table 3: Generalized endowment model with inflationary default risk

This table shows parameters for the generalized endowment model which includes rare disasters and infla-
tionary default. We take average consumption growth from the data in each sample. We jointly estimate
moments for inflation, non-disaster inflation expectation qt, and expected dividend growth from FRED, IBES
data, and the Survey of Professional Forecasters as described in Appendix D. We calibrate the discount factor
β and the decline in bond value λη to match the average level of the price-dividend ratio and the average
Treasury bill rate in each sample. In both subsamples, γ = 5, η = 0.3, the disaster probability equals 2.25%,
and the EIS equals 1. Corr(C, q) and Corr(C, π) refer to the correlations between shocks to log consumption
growth and q and π respectively. q represents expected inflation outside of disasters. Parameters are in
annual terms.

Values

Parameter 1984–2000 2001–2021

Panel A: Moments in the data

Price-earnings ratio κ 19.41 24.85

1-year Treasury yield yb 0.0589 0.0126

Panel B: Parameters that change

Average consumption growth µ 0.0257 0.0157

Average non-disaster expected inflation q̄ 0.0351 0.0217

Correlation of consumption and expected inflation Corr(C, q) 0.035 0.233

Correlation of consumption and realized inflation Corr(C, π) -0.168 0.692

Panel C: Dynamic model calibration

Discount factor β 0.948 0.946

Fraction of bond value lost λη 0.163 -0.031

these years. Finally, it is possible that patience reversed itself, and β is now lower. The rise

in valuation ratios makes this unlikely. Ultimately, it is difficult to account for this episode

without assuming a rise in sovereign default risk.21 In our calibration, we find that λ would

have to rise substantially. Even though interest rates remain low by historical standards, the

fraction of value lost in default in case of disaster rises to 19.5%, which is similar to what

21If the correlation between consumption growth and inflation reversed again, this could contribute to the
increase through an increased risk premium. However, as the above discussion shows, the empirical import
of this channel would be small.
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we find in the early part of the sample.22 It is too soon to tell whether this shift represents

say, a long-term shift in the public’s assessment of sovereign default risk or something else.

4 Production economy with inventory

Finally, we ask whether these results are robust to inclusion into a production economy, in

which growth ultimately arises from firm productivity and depreciation. We introduce a

novel element that naturally arises with low nominal interest rates: a riskless technology

that allows goods to move from one period to another (inventory). The existence of this

technology helps address another puzzle, that of the behavior of the investment-capital ratio.

We first solve a standard production economy model and show that it implies allocations

and prices identical to an endowment economy. This allows us to more clearly show the

effect of the inventory technology in the next section.

4.1 No-inventory case

We consider a standard production model in which capital quality can decline suddenly and

unpredictably.23 Let Kt denote the quantity of productive capital at time t. Given Kt and

constant productivity A, output equals

Yt = AKt. (18)

22For simplicity, we tie our hands in the model by assuming that sovereign default only occurs in inflation
during disasters. However, interpreting the most recent inflationary episode as sovereign default, raises the
possibility that investors used this episode to sharply update their beliefs regarding future default episodes
as in Wachter and Zhu (2024).

23See Barro (2009), Gabaix (2011), and Gourio (2012).
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Let δ denote depreciation and Xt investment. Capital evolves according to:

K̃t+1 ≡ Xt + (1− δ)Kt (19)

Kt+1 ≡ K̃t+1(1− χt+1), (20)

where χt+1, defined in (2), represents destruction of capital. We assume A > 1−δ, consistent

with a growing economy. Following Gomes et al. (2019), we refer to K̃ as planned capital,

the quantity of capital available if the disaster does not occur.

We can restate the agent’s problem as a consumption-portfolio choice decision in which

the agent allocates savings to capital and the riskfree bond. Let Bt denote the time-t dollar

allocation to the riskfree asset. Define the agent’s wealth at time t as

Wt ≡ Ct +Bt + K̃t+1, (21)

If investment in capital grows at the stochastic rate RK,t+1, wealth at time t+ 1 must equal

Wt+1 = BtRf,t+1 + K̃t+1RK,t+1. (22)

What is RK,t+1? Equations (18–20) indicate that, should a disaster not occur, a single unit

of capital creates A units of output. A fraction δ is lost prior to the next period. Should a

disaster occur, then a fraction χt+1 is lost. Given the remaining capital, A units of output

are created and an additional fraction δ is lost. Therefore, the return on capital is

RK,t+1 = (1− δ + A)(1− χt+1). (23)

We can rewrite the budget constraint in terms of flow variables. Equating (21) with (22)
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at time t and substituting in for RK,t implies

Ct +Bt + K̃t+1 = Bt−1Rf,t + K̃t(1− δ + A)(1− χt).

Using (19) and (20), then subtracting (1− δ)Kt from both sides implies

Ct +Bt +Xt = Yt +Bt−1Rf,t. (24)

That is, output from the capital stock plus wealth in bonds can be used toward consumption,

bond purchases at time t, or investment in the productive asset.

We can also rewrite the budget constraint in terms of the evolution of wealth. Define the

share of savings invested in capital as

αt ≡
K̃t+1

Wt − Ct

.

Substituting in for Bt in (22) from (21) implies that

Wt+1 = (Wt − Ct)(Rf,t+1 + αt(RK,t+1 −Rf,t+1)), (25)

is an equivalent expression for the budget constraint. Let RW,t+1 ≡ Wt+1/(Wt − Ct) denote

the return on the wealth portfolio.

We assume Epstein and Zin (1989) and Weil (1990) preferences with unit EIS. The agent

chooses consumption Ct and the capital portfolio share αt to solve

max
Ct,αt

(
C1−β

t

(
Et

[
V (Wt+1)

1−γ
]) β

1−γ
)
, (26)

subject to (25). Conjecturing that V (Wt) equals a constant multiplied by Wt, and apply-

ing the first-order condition for optimal consumption implies the standard unit EIS result
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Ct/Wt = 1− β.

In equilibrium, the bond is in zero net supply (αt = 1), and (24) reduces to

Ct +Xt = Yt = AKt. (27)

Furthermore, the conditions α = 1 and Ct = (1 − β)Wt imply that consumption is a fixed

percentage of planned capital:

Ct =
1− β

β
K̃t+1 =

1− β

β
(Xt + (1− δ)Kt), (28)

where the second equality follows from the capital accumulation equation (19).

What does this model imply for investment and for economic growth? Substituting in

for Ct in (27) gives us the equilibrium investment-capital ratio with unit EIS:

Xt

Kt

= β(1− δ + A)− (1− δ). (29)

Evidently, the investment-capital ratio is strictly increasing in β. An increased demand for

savings coming from an increase in β (a savings glut) unambiguously leads to an investment

boom. Further, in this unit-EIS case, risk does not affect the investment decision: lower

investment relative to capital must come through either a reduction in β or from the deter-

ministic components of the return on capital A and δ. One may reconcile a decline in the

riskfree rate with a decline in investment by arguing that productivity A or depreciation δ

have declined. In order to match the decline in growth—a decline in µ in the endowment

economy—one would need A − δ to decline as well. But even if this explanation succeeds

at matching investment and interest rates, the puzzle of stable valuation ratios and the de-

pendence of results on the EIS remain unresolved. If the EIS were to exceed 1, increased

macroeconomic risk could lead to a reduction in X/K, but this relies on scant evidence of

increased risk and requires placing economically meaningful restrictions on the EIS.

36



Consumption, investment, and output grow at the same rate. First, note that wealth

grows at rate:
Wt+1

Wt

=
Wt − Ct

Wt

Wt+1

Wt − Ct

= βRK,t+1. (30)

(We have used the constant consumption-wealth ratio and the equilibrium condition α = 1.)

This must also be the growth rate of consumption. Substituting in for RK,t+1 implies

Ct+1

Ct

= β(1− δ + A)(1− χt+1). (31)

This is then also the growth rate of planned capital, lagged one period. In equilibrium, all

investment is in planned capital, so K̃t+1/K̃t = Wt/Wt−1. From (30), then, it follows that24

Kt+1

Kt

=
K̃t+1

K̃t

1− χt+1

1− χt

= βRK,t
1− χt+1

1− χt

= β(1− δ + A)(1− χt+1).

The result for output then follows from Yt = AKt and the result for investment follows

from (27). As a consequence, the price-dividend ratio κY on the claim to output equals the

price-dividend ratio κ on the consumption claim: κY = κ = β/(1− β).

We now turn to the implications of this model for the interest rate and for stock returns.

Given V (Wt) ∝ Wt, the first-order condition with respect to α implies

Et

[
R1−γ

W,t+1

]−1 Et

[
R−γ

W,t+1(RK,t+1 −Rf,t+1)
]
= 0 (32)

(see Appendix G for details). The equilibrium condition α = 1 implies RW,t+1 = RK,t+1.

24Here we have used the fact that planned capital K̃t+1 is a constant fraction of wealth Wt (in this model,
this fraction is one), so that K̃t+1/K̃t =Wt/Wt−1 = βRK,t.
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Substituting RK,t+1 into (32) implies a value for the log riskfree rate:

logRf = logEt

[
R1−γ

K,t+1

]
− logEt

[
R−γ

K,t+1

]
= log(1− δ + A) + log(1 + p((1− η)1−γ − 1))− log(1 + p((1− η)−γ − 1))

≈ A− δ + p((1− η)1−γ − (1− η)−γ).

(33)

Equations (32) and (33) imply the following expression for the SDF:

Mt+1 = Et

[
R1−γ

W,t+1

]−1
R−γ

W,t+1. (34)

Furthermore, the risk premium equals

logEt[RK,t+1]− logRf = log(1− pη)

+ log(1 + p((1− η)−γ − 1))− log(1 + p((1− η)1−γ − 1)), (35)

exactly as in the endowment economy.

These asset pricing results are isomorphic to the endowment economy from Section 3.

Indeed, equilibrium prices in the two models are identical if the parameters are such that the

equilibrium consumption growth processes are the same.25 The key difference between the

models, however, is that there are two margins of adjustment in the production economy:

quantities and prices. This is why, for example, the patience parameter β does not show

up in (33). Instead, β influences quantities through the investment-capital ratio, which in

turn affects prices. In the standard endowment economy, quantities cannot adjust, as the

representative investor consumes whatever is produced in a given period.

25In this setting, this occurs when β−1eµ = (1− δ+A). One can verify this by comparing (6) and (33). In
general, production and endowment economies can be mapped to one another by equating the consumption
processes, a fact which is discussed in Chapter 2 of Cochrane (2001).
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4.2 Inventory case

Suppose now that, in addition to capital and a riskfree bond, the agent can put funds into

inventory, namely a riskfree storage technology with a zero net return. If we impose the

condition that riskfree storage be in zero supply, then the economy reduces to that in the

previous section. The innovation in this section is that the inventory asset can be in positive

supply across the economy.

Why would one have a positive-supply riskfree asset? As mentioned in the introduction,

any store of value from one period to another could count as inventory, provided that it

is in fact riskfree and can be frictionlessly interchanged between consumption and invest-

ment. Many consumption goods would not fit this description because they cannot easily

be changed into something other than what they are. Money does fit this description when

the risk of unexpected inflation diminishes; therefore, we will think of inventory as money.

We acknowledge that categorizing inventory—modeled as a real asset—as money, a fi-

nancial asset, requires a certain degree of conceptual abstraction. It is true that neither

firms nor government agencies retain sufficient consumer goods in stock to fully substantiate

the money supply. Nevertheless, there are solutions to reconcile this apparent incongruity.

For example, it is not strictly necessary for firms or governments to maintain a tangible

asset backup for their inventory, as long as they have the capacity to produce these goods in

response to emerging demand. Ultimately, if people have faith that money can be securely

held and readily exchanged for goods or services without significant inflation risk, the key

implications of our model continue to hold.

Since we think of inventory as money, we must impose the condition that inventory can

only exist as a feasible investment opportunity when inflation risk λ is low or negative. This

means that our analysis of inventory applies only to the second sample period, in which we

estimate low inflation risk. This turns out to make no difference—in the first sample, when

the equilibrium interest rate is greater than zero, inventory can exist but agents choose not
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to hold it.26 Again, strictly speaking, if the inventory asset is cash and there is expected

inflation but no unexpected inflation, then we could specify a negative expected return on

the inventory asset. However, expected inflation in the second sample period is small, so

allowing for a slightly different return on inventory would make little difference.

Like all valuation equations, the existence of this riskfree storage is predicated on in-

vestors’ (subjective) expectations about inflation. Evidence suggests (Reis, 2020) that in-

vestors believed inflation would be low and stable, and thus consistent with our assumptions

on the existence of inventory. As discussed above, interpreting inventory as money naturally

relates this safety technology to the safety of the government, as in Blanchard (2019). Con-

sequently, the fiscal theory of the price level (Cochrane, 2023) could provide a foundation

for investors’ beliefs in low and stable inflation.27

Consider the agent’s problem in Section 4.1, except here the agent can invest in a storage

technology with quantity It. The agent maximizes unit-EIS recursive utility by choosing

consumption and Bt, It, and K̃t+1. That is, the agent recursively solves

max
Ct,Bt,It,K̃t+1

(
C1−β

t

(
Et

[
V (Wt+1)

1−γ
]) β

1−γ
)
, (36)

26Liquidity services could be one reason investors choose to hold inventory in the presence of a positive
riskfree interest rate; this is the case in inventory-theoretic models like that of Alvarez et al. (2009). For
simplicity, we do not assume these.

27While our paper says nothing explicit about the accumulation of government debt, an interesting question
for future work is how low rates and inventory affect optimal government policy. A declining premium on
government debt could be one major reason that debt-to-GDP increased: as perceived safety increases and
the discount rate declines, the government could, ostensibly, sustain a higher level of debt. Inventory demand
provides another reason for higher debt. Equivalently, these channels can explain why rising debt did not
result in higher default risk premia. Blanchard (2019) provides a related argument to rule out default risk
as a concern for investors.
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subject to

Wt = Ct +Bt + It + K̃t+1 (37)

Wt+1 = BtRf,t+1 + It + K̃t+1RK,t+1 (38)

It ≥ 0. (39)

The solution is still characterized by V (Wt) ∝ Wt, implying the result Ct/Wt = 1− β.

We now characterize the equilibrium. We will use the notation R∗
f to denote the equilib-

rium interest rate in the no-inventory economy (Section 4.1, Equation 33). Then:

1. If R∗
f > 1, then in equilibrium It = 0, and the equilibrium is the same as in Section 4.1.

2. If R∗
f < 1, then It > 0. Investment in inventory crowds out investment in productive

capital.

The argument is as follows (Appendix G gives an alternative, more formal proof). First,

consider the case of R∗
f > 1, and conjecture that Rf,t+1 = R∗

f constitutes an equilibrium in

(36–39). This investor would never choose It > 0 because bonds offer superior returns; on

the other hand (39) implies that the agent cannot short-sell inventory. Therefore It = 0,

namely, the inventory asset is irrelevant, and thus α = 1 is still the market-clearing condition.

Equilibrium quantities and returns are the same as in Section 4.1.

Now assume that R∗
f < 1. The only possible equilibrium value for Rf is unity. This is

because Rf < 1 implies an arbitrage opportunity: the investor would borrow at Rf and invest

the proceeds in the inventory asset. If instead Rf > 1, the reasoning in the above paragraph

implies the agent would hold no inventory. That means R∗
f = Rf > 1, contradicting the

assumption. Intuitively, we can find an equilibrium with inventory for the following reason:

if the agent does not hold inventory (α = 1) and the riskfree rate equals R∗
f,t+1 < 1, then the

agent will wish to hold more inventory, as it is a marginally better asset. Doing so, however,

reduces the volatility of the return on the wealth portfolio and stochastic discount factor and
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thus increases the equilibrium riskfree rate. The agent will increase holdings of inventory

until the equilibrium rate is equal to the return on inventory. The power of this reasoning

is that we can proceed by analyzing the cases R∗
f < 1 and R∗

f > 1 separately. Equation (33)

indicates that low productivity A, high depreciation δ, risk-averse investors, and high risk of

disasters might lead to R∗
f falling below one.

We focus on the case of R∗
f < 1; as the above argument shows, this is where inventory

matters. We show it is also empirically relevant in that it prevails in the second sample

period. Bonds are redundant, so we can assume Bt = 0. The requirement Rf = 1 replaces

α = 1 as the market-clearing condition. Given that the equilibrium takes this form, for

convenience we can rewrite the agent’s optimization problem as

max
Ct,αt

(
C1−β

t

(
Et

[
V (Wt+1)

1−γ
]) β

1−γ
)
,

subject to

Wt+1 = (Wt − Ct)(1 + αtrK,t+1),

where rK,t+1 = RK,t+1−1 is the net return on capital and α is the share of capital in savings,

as it was in Section 4.1. The first-order condition for α continues to be (32), which, in the

case with inventory, becomes

Et

[
1

(1 + αrK,t+1)
γ rK,t+1

]
= 0. (40)

Thus far we have not imposed distributional assumptions. Given our assumption on χt, we

obtain:
prK,η

(1 + αrK,η)
γ +

(1− p)rK,0

(1 + αrK,0)
γ = 0, (41)

where (with some abuse of notation) we let rK,0 ≡ (1−δ+A)−1 and rK,η ≡ (1−δ+A)(1−η)−1

denote the net returns on capital in the non-disaster and disaster states, respectively. Solving
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for α implies:

α = min

{
1,− ((1− p)rK,0)

1/γ − (−prK,η)
1/γ

((1− p)rK,0)1/γrK,η − (−prK,η)1/γrK,0

}
, (42)

The investor holds inventory when expected risk-adjusted capital returns are sufficiently low.

Because the consumption-wealth ratio is again 1 − β, we can apply the same reasoning

used to show (31) to find:

Ct+1

Ct

=
Wt+1

Wt

= β(1 + αrK,t+1) = β (α(1− δ + A)(1− χt+1) + 1− α) . (43)

Relative to the model in Section 4.1, consumption growth is less volatile because, in aggre-

gate, agents use inventory to smooth aggregate fluctuations. It is also, on average, lower,

because less is invested in the productive asset. Output growth, however, is more volatile.

Consumption growth is no longer tethered to output as in Section 4.1. Still, the relation

between growth in the capital stock and growth in wealth remains the same:

Kt+1

Kt

=
K̃t+1

K̃t

1− χt+1

1− χt

=
Wt

Wt−1

1− χt+1

1− χt

.

Substituting in from (43) then implies

Yt+1

Yt
=
Kt+1

Kt

= β

(
α(1− δ + A)(1− χt+1) + (1− α)

(
1− χt+1

1− χt

))
, (44)

Output growth is more volatile than consumption growth because it bears the full brunt of

disasters: note that 1 − χt+1 multiplies both the term with α (representing investment in

the risky technology) and 1 − α. By definition, the disaster applies to the entire existing

capital stock. While this effect makes output growth more volatile than consumption in the

present model, it does not, by itself, raise the volatility relative to the model in Section 4.1.

There is, however, a second effect, represented by 1 − χt in the denominator. Coming out

of a severe recession featuring capital destruction χt > 0, output growth is higher because
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agents invest more to get back to the optimal allocation. This raises the volatility of output

growth relative to the model in Section 4.1.

What are the properties of investment? Rewriting the capital accumulation equation

(19) so that Xt is on the left-hand side, and dividing by Kt implies

Xt

Kt

=
K̃t+1

K̃t

K̃t

Kt

− (1− δ)

= βRW,t(1− χt)
−1 − (1− δ)

= β(α(1− δ + A) + (1− α)(1− χt)
−1)− (1− δ),

where we have used the fact that K̃t+1/K̃t = βRW,t. After capital disasters, the agent invests

at a higher rate to replenish the capital stock. Consequently, the investment-capital ratio is

time-varying in this economy, despite i.i.d. shocks and a balanced growth path.

A disaster in the prior period increases investment in productive capital. This is because

the disaster affects capital disproportionately, and the agent must re-invest to return capital

back to its pre-crisis level. For an illustration, see Figure 9, which shows the investment-

capital ratio for χt = 0 (no disaster) and χt = η (disaster) for various values of the disaster

size.28 The figure also shows the optimal planned capital to wealth ratio α. For compari-

son, the figure also shows quantities in the case of no inventory. Fixing other parameters,

for disaster sizes of less than 25%, the gross riskfree rate is above one, implying that the

economies with and without inventory are the same. As the size of the disaster increases,

the equilibrium riskfree rate in the no-inventory economy falls sharply (we illustrate this in

Figure 11). It becomes optimal to hold inventory and investment in productive assets falls.

At that point, investment depends on the occurence of a disaster in the prior period. The

greater the size of the disaster, the greater the increase in investment. In contrast, with no

inventory, the investment-capital ratio is always the same.

28A higher disaster size has the same effect in the model as a higher disaster probability. What matters
for these mechanism is total disaster risk.
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Figure 9: Investment capital ratio in the model

The figure shows how capital investment varies with the size of the consumption decline in a disaster for
the production models with and without inventory. The figure plots the investment-capital ratio X/K in
the model with inventory when there is and is not a disaster, and in the model without inventory. It also
plots α, the share of savings invested in capital. Risk aversion γ = 6, the EIS ψ = 1, the patience parameter
β = 0.963, depreciation δ = 0.064, the probability of disaster p = 0.03, and the marginal product of capital
A = 0.12. The dotted black line represents the point at which the riskfree rate is equal to 0 in the model
without inventory.
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We define the stock market as the claim to output Yt in all future periods. As (44) shows,

the growth rate of capital is no longer i.i.d. but depends on χt (note that χt+1 is i.i.d. given

time-t information). Therefore, the price-dividend ratio on the output claim is a function of

χt and solves

κY (χt) = Et

[
Mt+1

(
1 + κY (χt+1)

) Yt+1

Yt

]
,

where the stochastic discount factor takes the same form as (34), with RW,t+1 now given as
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above. Note that RW,t+1 is i.i.d. Under our distributional assumptions:

κY (0) =
β

1− β

(
ν + (1− ν)

(
1 + αrK,0

1 + αrK,η

)
(1− η)

)
, (45)

κY (η) =
β

1− β

(
(1− ν) + ν

(
1 + αrK,η

1 + αrK,0

)
(1− η)−1

)
, (46)

where ν ≡ ((1−p)(1+αrK,0)
1−γ)/((1− p)(1 + αrK,0)

1−γ + p(1 + αrK,η)
1−γ). See Appendix G

for details. In the case where α = 1, the price-dividend ratio is the constant κY = β/(1−β).

Figure 10 shows the price-dividend ratio for various levels of the disaster size, both in the

economy with inventory and in the economy without. The economy without inventory has

a constant price-dividend ratio solely determined by β. When there is inventory, the price-

dividend ratio rises in disasters because dividends are temporarily depressed (they are also

low because of the disaster). This increase is due to the endogenous investment response,

whereby inventory is liquidated after a disaster to rebuild the capital that is destroyed.

In contrast with standard production models, the price-dividend ratio in the no-disaster

case declines (in a comparative statics sense) as a function of the disaster size (see Figure 10).

In the case without inventory, the price-dividend ratio is independent of disaster risk. Models

with production that seek to match business-cycle fluctuations in investment and valuation

ratios require the EIS to be greater than 1. Endowment models achieve the same effect

by imposing exogenous leverage (dividends more sensitive to shocks than consumption). In

this model, leverage is endogenous, and qualitatively correct price-dividend ratio dynamics

could in principle occur, even with an EIS of one. The magnitude of the decline in Figure 10

suggests that the effect is small under our calibration.

Figure 11 shows that the equity risk premium in this economy loses its usual dependence

on disaster risk. The equity premium equals rp ≡ logEt[RY,t+1] − logRf , where the return

on the output claim is

RY,t+1 =

(
κY (χt+1) + 1

κY (χt)

)(
Yt+1

Yt

)
.
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Figure 10: Price-dividend ratio in the model

The figure shows how the price-dividend ratio varies with the size of the consumption decline in a disaster
for the production models with and without inventory. The figure plots the price-dividend ratio in the
model with inventory when there is and is not a disaster, and in the model without inventory. Risk aversion
γ = 6, the EIS ψ = 1, the patience parameter β = 0.963, depreciation δ = 0.064, the probability of disaster
p = 0.03, and the marginal product of capital A = 0.12. The dotted black line represents the point at which
the riskfree rate is equal to 0 in the model without inventory.
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The blue line in the figure shows the equity premium in the model without inventory: it

is highly dependent on the disaster size, as is the riskfree rate. However, the return on

capital—which, in the economy with no inventory, is the equity return—is only very slightly

decreasing. This is a standard result in disaster-risk economies: the full discount rate on the

equity claim decreases slightly with the probability of a disaster.

While this might seem counterintuitive, it arises from the fact that, while the equity

premium increases, the riskfree rate declines and more than offsets the effect. Also recall

that the continuously compounded return in a standard i.i.d. economy can be expressed as

the log dividend yield plus the log growth in cash flows. When the EIS equals one, the
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Figure 11: Risk premia and riskfree rate in the model

The figure shows how the riskfree rate and risk premium vary with the size of the consumption decline in
a disaster for the production models with and without inventory. The moments plotted are: the equity
premium in the models with and without inventory, rpinv and rp∗; the riskfree rates in the models with and
without inventory, rinvf and r∗f ; and the expected return on capital, E[rK ]. The equity premium is defined as
the log expected return on the output claim minus the log riskfree rate. Risk aversion γ = 6, the EIS ψ = 1,
the patience parameter β = 0.963, depreciation δ = 0.064, the probability of disaster p = 0.03, and the
marginal product of capital A = 0.12. The dotted black line represents the point at which the net riskfree
rate is equal to 0 in the model without inventory.
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dividend yield does not depend on disaster risk, and so the only effect is the small effect

of expected cash flows. In the economy with inventory, the return on capital is the same

as in the economy without (this is defined by the production opportunities), and thus is

slightly decreasing. The riskfree rate is constant, implying that the premium on capital is

also slightly decreasing. The equity premium decreases slightly more in the disaster size as

compared to logE[RK ] − logRf . This is because the increase in the price-dividend ratio

counteracts the decline in output due to the disaster.
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Finally, the inflation-adjusted Treasury yield is equal to

yb = log
(
p(1 + αrK,η)

1−γ + (1− p)(1 + αrK,0)
1−γ
)

− log
(
p(1 + αrK,η)

−γ(1− λη) + (1− p)(1 + αrK,0)
−γ
)
. (47)

While the true riskfree rate cannot go below zero, the yield and expected return on the

defaultable claim could be positive or negative, depending on the sign of the risk premium.

The model is calibrated to match the inflation-adjusted Treasury yield, price-dividend

ratio, and GDP growth in the U.S., as in the sections above. Calibrating to match these

data requires solving a system of three equations in three unknowns, where the unknowns

are the parameters β, λ, and A and the three equation are Equations (45), (47), and

Yt+1(0)

Yt(0)
= β (α(1− δ + A) + (1− α)) (48)

which is GDP growth when the disaster does not occur. Indeed, each of the moments to

which we calibrate parameters is the value in the no-disaster state (χt = 0), consistent with

the fact that we do not observe any disasters in our sample. We then solve for the values of

the parameters that equate the data moments with their corresponding model moments.

Table 4 displays the results from the calibration with inventory. The model explains

the data moments with a quantitatively reasonable calibration of β, λ, and A. The slight

increase in β matches the modest rise in the price-dividend ratio; lower capital productivity

A matches the lower growth in the second sample.29 Inflationary default risk λη falls, in line

with the estimates in Section 3.30 Notably, because the model does not require a substantial

increase in β to explain asset prices—a force that would drive up investment and thus

29We could, equivalently, keep A constant and estimate an increase in δ; they are isomorphic for explaining
the growth decline.

30The estimates of λ are slightly different than in Table 2 because we calibrate to average GDP growth
instead of consumption growth.
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Table 4: Inventory and inflationary default in a model with production

The model is solved with risk aversion γ = 5 and EIS ψ = 1. Consumption declines 30% in a disaster
(η = 0.30), the probability of disaster p = 2.25%, and depreciation δ = 0.05.

Values

Parameter 1984–2000 2001–2021

Panel A: Moments in the data

Price-dividend ratio κ 42.34 50.86

Inflation-adjusted Treasury yield yb 0.0279 -0.0069

US GDP growth ∆Y
Y

0.0241 0.0122

Panel B: Calibration, γ = 5, EIS = 1, η = 0.30

Discount factor β 0.977 0.981

Fraction of bond value lost λη 0.142 -0.06

Capital productivity A 0.099 0.084

economic growth—the model estimates a much smaller decrease in productivity than would

be required in the presence of a standard savings-glut mechanism.

As we know from our endowment-economy results, the model with sovereign default can

explain these data moments with or without inventory. What is novel to the inclusion of

inventory in this production model is its endogenous effects on investment and growth. Panel

A of Table 5 reports model-implied moments for the inventory model under the calibration

in Table 4. Due to both a decline in A and an endogenous decline in the capital share α,

and despite a modest rise in β, the investment-capital ratio falls from 7.4% to 6.2%. Output

growth falls with investment. To illustrate the role of inventory, Panel B of Table 5 shows

what would have happened to growth and investment in the absence of inventory—that

is, under the calibration in Table 4 but imposing α = 1. Without the endogenous saving

response at the zero lower bound, the effect of the decline in A on growth and investment

are diminished. Notably, the model without inventory still predicts a decline in investment

and growth because the increase in β is not large enough to induce an investment boom.
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Table 5: Inventory and inflationary default with production: untargeted moments

The model is solved with risk aversion γ = 6 and EIS ψ = 1. Consumption declines 30% in a disaster
(η = 0.30), the probability of disaster p = 2.25%, and the marginal product of capital A = 0.12. The
calibrated parameters from Table 4 are used for β, λ, and δ.

Values

Parameter 1984–2000 2001–2021

Panel A: With inventory, γ = 5, EIS = 1, η = 0.30

Risky capital share α 1.000 0.947

US GDP growth ∆Y
Y

0.024 0.012

Investment-capital ratio X
K

0.074 0.062

Unconstrained riskfree rate r∗f 0.011 -0.003

Panel B: Without inventory, γ = 5, EIS = 1, η = 0.30

Risky capital share α 1.000 1.000

US GDP growth ∆Y
Y

0.024 0.014

Investment-capital ratio X
K

0.074 0.064

Unconstrained riskfree rate r∗f 0.011 -0.003

According to the model, small structural changes in the economy—including technological

forces that depressed growth and demand-side forces that increased savings—drove down the

unconstrained riskfree rate below zero. The existence of inventory amplified these structural

changes: when the riskfree rate hit zero, investors began to hoard money, further driving

down investment and growth and preventing interest rates from becoming negative. In

summary, to account for declining interest rates, stable valuations, and stagnating investment

and growth, we need a substantial decline in the inflation risk premium. Additionally, real

interest rates fell to zero, precipitating a deepening of the economy’s secular stagnation.

Table 5 suggests that, according to the inventory model, the unconstrained riskfree rate

fell to approximately 30 basis points below zero, incentivizing investors to hold about 5% of

their wealth in inventory. If inventory is indeed money, then this should show up in the data
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Figure 12: Money supply relative to the capital stock

The figure shows the ratio of the money supply to the capital stock in the U.S. economy. We report two
measures of the money supply. The first is M2, which adds to M1 savings accounts, small time deposits, and
retail money market mutual funds. The second is MZM (zero-maturity money), which is constructed by the
Federal Reserve Bank of St. Louis and includes M2 less small-denomination time deposits plus institutional
money market funds.
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as an increase in the money supply relative to the capital stock. To assess this prediction of

the inventory model, we plot this ratio in Figure 12. We report two definitions of the money

supply, both of which have risen relative to the capital stock in the twenty-first century.

The first is the common M2 measure. The second, which we argue is a better measure of

inventory, is the more inclusive “zero-maturity money” measure (MZM) from the St. Louis

Fed, which takes M2, removes small illiquid time deposits, and adds institutional money

market mutual funds (whereas M2 only includes retail money market funds). The rise in

MZM relative to capital over the past two decades has been sizable, in line with our model’s

prediction of an increasing share of wealth in money-like inventory assets.
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5 Concluding remarks

The puzzle of declining interest rates is a puzzle not only from the point of view of the last

quarter century, but over a much longer horizon. It is also a joint puzzle: why have low

interest rates not been accompanied by higher valuation ratios and investment rates?

The purpose of this article is to argue that the most natural explanation is not an

increased demand for savings, which would lower interest rates and raise valuation ratios;

nor a decrease in growth, which is hardly enough on its own to account for the observed

change; nor an increase in the risk premium, as there is no evidence that risk has increased

by nearly the required amount. These joint phenomena have a simple explanation: the true

riskfree rate has not fallen nearly as much as conventional measurements from nominal yields

suggest. Government debt claims are defaultable, and investors have come to require a lower

premium for this risk of default.

In support of our explanation, we build a framework to explain very low nominal debt

yields that is also consistent with an equilibrium zero lower bound. We accomplish the former

using a model with a risk of rare disasters. In a rare disaster model, investors’ precautionary

savings demand pushes the riskfree rate below zero. We accomplish the latter by introducing

a costless storage technology into a production economy. When parameters are such that

the true riskfree rate is below zero, agents choose to save into inventory until markets clear

at a riskfree rate of zero.

What we do not model is the cause for the decline in investor expectations of sovereign

default. Evidence suggests that this decline has both a relatively short-term component

based on the history of the last 40 years and a long-term component spanning centuries,

based on a growing faith over time in the stability of sovereigns. The forces determining this

shift in expectations, at both high and low frequencies, are an interesting topic for further

research.
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Internet Appendix

A Data description

We use various series to illustrate the secular decline in interest rates in the short- and

long-run. To obtain interest rates from 1311–2018, we rely on data from Schmelzing (2020).

The dataset contains nominal interest rate and inflation time series for several developed

economies over the last eight centuries. Specifically, the data include long-term sovereign

borrowing rates with an average maturity that hovers around 10 years; however, this varies

over time and across countries. From these data, we plot the nominal sovereign borrowing

yields for the United Kingdom, Holland, Germany, Italy, and the United States in Panel A

of Figure 1. The data are collected from a variety of sources, outlined in detail in the paper

and online appendix. The U.K. borrowing rates come from the Calendar of State Papers

and the Bank of England. Data before 1694 for the U.K. (before the founding of the Bank

of England) are not used, since the data are incomplete. Data for the Netherlands come

from Dormans (1991), Weeveringh (1852), the European Central Bank, and various sources

from Leiden, Haarlem, Utrecht, Schiedam, and Amsterdam. German data come from various

sources from several German principalities. U.S. data come from Durand and Winn (1947),

Homer and Sylla (2005), the NBER Macrohistory database, and Federal Reserve Economic

Data (FRED) from the Federal Reserve Bank of St. Louis.

We also report the Bank of England (BoE) short-term lending rate (series BOERUKM)

from FRED. From 1694 to 1971, the “bank rate” is used; from 1972 to 1981, the minimum

lending rate is used; from 1981 to 1997, the BoE base rate is used; and from 1997 to the

present, the BoE Operational interest rate is used. For more information see the Bank of

England research datasets webpage.

Data for U.S. interest rates in modern times come from FRED. Panel A of Figure 2

presents the effective Federal Funds Rate (series FEDFUNDS), the rate corresponding to
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the median volume of overnight unsecured loans between depository institutions. In our

calibration exercises, for comparability with Farhi and Gourio (2018) we use the log one-

year constant maturity Treasury rate (FRED: DGS1), less the lagged log change in the

Consumer Price Index for All Urban Consumers: All Items in U.S. City Average (FRED:

CPIAUCSL). Data for interest rates in Appendix E come from Jordà et al. (2019).

U.K. inflation-linked and nominal Gilts yields are taken from Global Financial Data,

which sources the yields from the Bank of England. Inflation in the U.K. at one- and five-

year horizons is calculated from the monthly CPI on all items, as reported by the OECD

(see also FRED series GBRCPIALLMINMEI).

Data on U.S. inflation expectations for Figure 6 come from FRED and the Survey of

Professional Forecasters. From FRED, we use the inflation expectations from the Surveys of

Consumers of University of Michigan (series MICH), which covers short-term inflation expec-

tations, and the expected 10-year-ahead inflation implied from Treasury Inflation-Indexed

Constant Maturity Securities (series T10YIE). From the Survey of Professional Forecasters,

we use the 10-year ahead inflation expectations. To calibrate the model in Section 8, we

use median one-year-ahead expected inflation from the Survey of Professional Forecasters

(series: CPI). These data are also used to construct the deviation of expected inflation from

realized inflation shown in Figure 7.

Growth data come from different sources. In Tables 1–2, the U.S. growth parameter

µ is set to match per capita consumption growth, series A794RX0Q048SBEA from FRED

Economic Data hosted by the St. Louis Federal Reserve. In Figure 2 and Table 4, we use real

per capita GDP growth rates from FRED (series A939RX0Q048SBEA) as the growth rate

for the U.S. Average annual growth rates are used, which are computed using December-to-

December values. When calibrating to the international evidence in Appendix E, we use the

real GDP growth series from Jordà et al. (2019).

Data on investment and capital stock come from the Bureau of Economic Analysis (BEA)

Fixed Assets Accounts Tables. Investment data come from Table 1.5, Line 2 and capital stock

62



data come from Table 1.1, Line 2. In these data, investment as a fraction of capital averaged

7.7% from 1984–2000 and 6.8% from 2001–2021.

Price-dividend ratio data for the U.S. from 1984 to 2021 are from the Center for Research

in Security Prices (CRSP). Specifically, we use cum-dividend returns (series VWRETD) and

ex-dividend returns (series VWRETX). To calculate the price-dividend ratio, we back out

prices and dividends from cum- and ex-dividend returns. This series is plotted in Panel B

of Figure 2. We use this procedure to calculate our price-dividend ratio moments for the

calibrations in Tables 1 and 2.

We calibrate the model in Section 3.3 to the cyclically-adjusted price-earnings ratio

(CAPE): the price divided by the average inflation-adjusted earnings from the previous

10 years. See Shiller (2000) and online data description. The model in Section 3.7 uses the

price-earnings ratio, prices, dividends, and earnings on the S&P 500 also from Shiller (2000).

Valuation ratio data for the international evidence in Appendix E come from Jordà et al.

(2019).

To calibrate the consumption-dividend ratio z in the generalized endowment model, we

use two main sources. The first is expected one-year ahead earnings growth from De la O

and Myers (2021). The second are the Personal Consumption Expenditures series (FRED:

PCE) from FRED economic data and earnings come from Robert Shiller’s webpage (Shiller,

2000).

Finally, we obtain the Volatility Index (VIX) series from the Chicago Board Options Ex-

change (CBOE). The CBOE calculates the risk-neutral expected 30-day quadratic variation

using option prices. There are small differences in the calculation methodology over the

years; see CBOE white paper.
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B Structural break test

Throughout the main text, we calibrate the model to data from two subsamples. We deter-

mine the most likely date for a structural break in the average one-year inflation-adjusted

Treasury yield (denoted yb in the paper). Specifically, for each potential break year tbreak

since 1985, we estimate the regression31

y$b,t −∆πt = β0 + β11{t > tbreak}+ ϵt, (B.1)

which amounts to estimating yb separately in each sample period. Figure B.1 plots the F-

statistic from this regression as a function of the break point. Evidently, 2001 stands out as

the best fit for a structural break in inflation-adjusted yields.

As we mention in the main text, our choice of 2001 as a break date is also consistent

with prior work studying secular changes in macroeconomic time series since the 1980s.

First, Farhi and Gourio (2018) calibrate their model to two separate data samples around

this date. Second, using a regression-based break test very similar to ours, Campbell et al.

(2020) identify 2001 as the most likely year for a structural break in the relation between

GDP growth and inflation. They find that the two series were negatively correlated prior to

2001 and became positively correlated thereafter.

31Recall that y$b,t is the yield on the one-year Treasury bill and ∆πt is one-year realized inflation, so this
difference represents the ex post return on the one-year nominal bond.
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Figure B.1: Structural break test on interest rates
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Notes: The figure presents F-statistics for the linear regression (B.1), estimated using OLS
for all potential break dates from 1985–2015 using data on one-year nominal Treasury bill
yields less inflation.
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C Endowment model with general EIS and constant

within-period growth rates

C.1 Price-consumption ratio

Given the SDF (3), the Euler equation with respect to the consumption claim is

1 = Et

[
βθ

(
Ct+1

Ct

)− θ
ψ

Rθ
W,t+1

]
. (C.1)

Conjecture a constant price-consumption ratio

κ ≡ (Wt − Ct)/Ct. (C.2)

Substituting (C.2) into (C.1) and using RW,t+1 = Wt+1/(Wt − Ct) implies

1 = βθEt

[(
Ct+1

Ct

)θ(1− 1
ψ
)(

κ+ 1

κ

)θ ]
. (C.3)

Given (2–1),

κ

κ+ 1
= βe(1−

1
ψ
)µ

[
1 + p((1− η)1−γ − 1)

] 1
θ

. (C.4)

A solution exists provided that the right hand side of (C.4) is less than one. We restrict

attention to parameter combinations satisfying this restriction. Finally,

κ =

βe(1−
1
ψ
)µ

[
1 + p((1− η)1−γ − 1)

] 1
θ

1− βe(1−
1
ψ
)µ

[
1 + p((1− η)1−γ − 1)

] 1
θ

, (C.5)

verifying the conjecture.
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C.2 Riskfree rate

The riskfree rate is given by the Euler equation for the riskfree asset

Rf = Et

[
βθ

(
Ct+1

Ct

)− θ
ψ

Rθ−1
W,t+1

]−1

. (C.6)

This simplifies to

Rf = Et

[
βθ

(
Ct+1

Ct

)−γ(
κ

κ+ 1

)1−θ
]−1

. (C.7)

where κ/(κ + 1) is given by (C.4). Solving this yields the expression for the gross riskfree

rate

Rf = β−1e
1
ψ
µ

[
1 + p((1− η)−γ − 1)

]−1[
1 + p((1− η)1−γ − 1)

] θ−1
θ

(C.8)

which implies that the log riskfree rate is given by

logRf = − log β +
1

ψ
µ− log(1 + p((1− η)−γ − 1))

+

(
θ − 1

θ

)
log(1 + p((1− η)1−γ − 1)). (C.9)

C.3 Yield and expected return with sovereign default risk

Consider the defaultable short-term government bond paying (1 − Lt+1) dollars—that is, 1

dollar in the case of no default and 1 − λη dollars in the case of default. The price of this

claim is obtained by solving the Euler equation

Qt = Et

[
βθ

(
Ct+1

Ct

)− θ
ψ

Rθ−1
W,t+1(1− Lt+1)

]
, (C.10)
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which simplifies to

Qt = Et

[
βθ

(
Ct+1

Ct

)−γ(
κ

κ+ 1

)1−θ

(1− Lt+1)

]
, (C.11)

where κ/(κ+ 1) is given by (C.4). This gives the price of the defaultable claim as

Qt = βe−
1
ψ
µ

[
1 + p((1− η)1−γ − 1)

] 1−θ
θ
[
1 + p((1− λη)(1− η)−γ − 1)

]
. (C.12)

The yield on the defaultable claim is defined as yb,t ≡ − logQt, and is thus equal to the

constant

yb = logRf + log (1 + p((1− η)−γ − 1))− log (1 + p((1− λη)(1− η)−γ − 1)), (C.13)

where logRf is given by (C.9). The expected excess return on the bond is the expected

payoff divided by the price, less the log riskfree rate, and therefore equals

logEt [Rb,t+1]− rf = log (1 + p((1− λη)− 1))

+ log (1 + p((1− η)−γ − 1))− log (1 + p((1− λη)(1− η)−γ − 1)). (C.14)

Suppose instead of being subject to outright default, the bond is a nominally riskfree

asset and so the government partially defaults through inflation. Assume inflation is given

by the process (11). The price of this defaultable claim is obtained by solving the Euler

equation

Q$
t = Et

[
βθ

(
Ct+1

Ct

)− θ
ψ

Rθ−1
W,t+1

Πt

Πt+1

]
, (C.15)

which simplifies to Q$
t = Qte

−qt for the price Qt given by (C.12). Subsequent results in the

main text then follow straightforwardly.

68



D Generalized endowment model with unit EIS

For ease of exposition in what follows, we use the following notation for variances and

covariances of shocks. Consider a vector of shock loadings σ (for example, σC or σs). First,

to express variances, we use the fact that |σ|2= σ⊤σ, where |·| denotes the Euclidean norm

of a vector. And second, for two vectors of shock loadings σ1 and σ2, we use the notation

σ12 ≡ σ⊤
1 σ2 to denote covariances between shocks. For instance, σCπ ≡ σ⊤

Cσπ.

D.1 Discount factor and riskfree rate

The results from the production model (see Appendix G below) imply that, with unit EIS,

the consumption-wealth ratio Ct/Wt = 1− β, and thus the return on wealth equals

RW,t+1 =
Wt+1

Wt − Ct

= β−1Ct+1

Ct

. (D.1)

The production model also shows that the SDF equals

Mt+1 = Et[R
1−γ
W,t+1]

−1R−γ
W,t+1. (D.2)

Substituting in the wealth return, the expectation term equals

Et[R
1−γ
W,t+1]

−1 = β1−γe(γ−1)µ−(1−γ)2|σC |2/2(1 + p((1− η)1−γ − 1))−1, (D.3)

and so the SDF can be written

Mt+1 = βe−µ−(1−γ)2|σC |2/2−γσ⊤
C εt+1

(1− χt+1)
−γ

1 + p((1− η)1−γ − 1)
, (D.4)
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and implies the riskfree rate

logRft = − logEt[Mt+1] = − log β + µ+
1

2
[(1− γ)2 − γ2]|σC |2

− log(1 + p((1− η)−γ − 1)) + log(1 + p((1− η)1−γ − 1)). (D.5)

The term structure of inflation-protected long-term bonds is flat (that is, all yields equal the

riskfree rate).

D.2 Stock prices

Given that the log consumption-dividend ratio evolves as

zt+1 = (1− ρz)z̄ + ρzzt + σ⊤
z εt+1 − ξ log(1− χt+1).

dividend growth can be expressed as

Dt+1

Dt

=
Ct+1

Ct

ezt−zt+1 = eµ+(1−ρz)(zt−z̄)+(σC−σz)⊤εt+1(1− χt+1)
1+ξ. (D.6)

Henceforth, let µDt = µ + (1 − ρz)(zt − z̄) and σD = σC − σz. For σCz ≤ 0, dividends

are more volatile than consumption and rise (fall) more when consumption rises (falls).

Dividends and consumption are cointegrated, so expected dividend growth is higher when

the current consumption-dividend ratio zt is larger. If we set σ2
z = ξ = 0 and z0 = z̄ = 1,

then the dividend is just consumption and this becomes the consumption claim.

Consider the claim to the single dividend n periods from now, Dt+n, and let PDnt denote

its price. The price-dividend ratio on this claim will be a function of maturity n and the

consumption-dividend ratio zt:

κD(n, zt) =
PDnt

Dt

. (D.7)
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The price therefore satisfies

κD(n, zt) = Et

[
Mt+1

Dt+1

Dt

κD(n− 1, zt+1)

]
. (D.8)

Conjecture that

κD(n, zt) = exp {aD(n) + bD(n)(zt − z̄)} (D.9)

for some functions aD(n) and bD(n) with aD(0) = bD(0) = 0. Noting that

Mt+1
Dt+1

Dt

= βe(1−ρz)(zt−z̄)−(1−γ)2|σC |2/2+(σD−γσC)
⊤εt+1

(1− χt+1)
1+ξ−γ

1 + p((1− η)1−γ − 1)
(D.10)

and

κD(n− 1, zt+1) = exp
{
aD(n− 1) + bD(n− 1)(ρz(zt − z̄) + σ⊤

z εt+1)
}
(1− χt+1)

−ξbD(n−1),

(D.11)

this means that

eaD(n)+bD(n)(zt−z̄) = βeaD(n−1)+[(1−ρz)+bD(n−1)ρz ](zt−z̄)−(1−γ)(1−bD(n−1))σCz+(1−bD(n−1))2|σz |2

× 1 + p((1− η)1+ξ(1−bD(n−1))−γ − 1)

1 + p((1− η)1−γ − 1)
. (D.12)

Taking logs and collecting terms in zt − z̄ implies the recursion

bD(n) = (1− ρz) + ρzbD(n− 1) = (1− ρz)
n−1∑
j=0

ρjz = 1− ρnz , (D.13)
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while taking logs and collecting constants implies

aD(n) = aD(n− 1) + log β − (1− γ)ρn−1
z σCz + ρ2(n−1)

z |σz|2

+ log(1 + p((1− η)1+ρn−1
z ξ−γ − 1))− log(1 + p((1− η)1−γ − 1)). (D.14)

(Note that in the limit as n → ∞ we have aD(n)/n → log β and bD(n)/n → 0.) Given this

solution, it follows that the price-dividend ratio on the whole market is given by

κD(zt) =
∞∑
n=1

κD(n, zt). (D.15)

D.3 Bond prices

Consider the n-period zero-coupon nominal bond, which is a claim to the cash flow Π−1
t+n (in

real terms). This bond has price Pπnt = Π−1
t κπ(n, qt) and satisfies

κπ(n, qt) = Et

[
Mt+1

Πt

Πt+1

κπ(n− 1, qt+1)

]
.

Conjecture that

κπ(n, qt) = exp {aπ(n) + bπ(n)(qt − q̄)}

for some functions aπ(n) and bπ(n) with aπ(0) = bπ(0) = 0. Noting that

Mt+1
Πt

Πt+1

= βe−µ−(1−γ)2|σC |2/2−qt−(σπ+γσC)
⊤εt+1

(1− λχt+1)(1− χt+1)
−γ

1 + p((1− η)1−γ − 1)

and

κπ(n− 1, qt+1) = exp
{
aπ(n− 1) + bπ(n− 1)(ρq(qt − q̄) + σ⊤

q εt+1)
}
,
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this means that

eaπ(n)+bπ(n)(qt−q̄) = βeaπ(n−1)−µ−q̄+[−1+bπ(n−1)ρq ](qt−q̄)−(1−γ)2|σC |2/2+|bπ(n−1)σq−σπ−γσC |2/2

× 1 + p((1− λη)(1− η)−γ − 1)

1 + p((1− η)1−γ − 1)
.

Taking logs and collecting terms in qt − q̄ implies the recursion

bπ(n) = −1 + ρqbπ(n− 1) = −
n−1∑
j=0

ρjq = −
1− ρnq
1− ρq

,

while taking logs and collecting constants implies

aπ(n) = aπ(n− 1) + log β − µ− q̄ − 1

2
(1− γ)2|σC |2+

1

2

∣∣∣∣1− ρn−1
q

1− ρq
σq + σπ + γσC

∣∣∣∣2
+ log(1 + p((1− λη)(1− η)−γ − 1))− log(1 + p((1− η)1−γ − 1)),

or, in terms of the riskfree rate,

aπ(n) = aπ(n−1)−logRf−q̄+
1

2

((
1− ρn−1

q

1− ρq

)2

|σq|2+|σπ|2
)
+
1− ρn−1

q

1− ρq
(σqπ+σCq)+γσCπ

+ log(1 + p((1− λη)(1− η)−γ − 1))− log(1 + p((1− η)−γ − 1)).

D.4 Calibration

We calibrate the model parameters to their method of moments counterpart in the data.

The values these parameters take are shown in Table D.1. The volatility of consumption

growth is calibrated to match the volatility of real personal consumption expenditures from

the Federal Reserve Economic Data (FRED). The volatility of dividend growth, is set to

match the volatility of realized dividend growth as given in data of De la O and Myers

73



(2021).

The consumption-dividend ratio z is calibrated to match earnings expectations in ad-

dition to the time series moments of the consumption-earnings ratio. We calibrate zt − z̄

to match expected one-year ahead earnings growth from De la O and Myers (2021). This

is done using the relationship in the model µDt = µ + (1 − ρz)(zt − z̄). For the long-run

average and persistence of the consumption-dividend ratio ρz, we use their data counterpart

from the consumption-earnings ratio, where consumption is from the Personal Consumption

Expenditures series (FRED: PCE) and earnings come from Robert Shiller’s webpage. The

volatility of the consumption-dividend ratio σz is then given by the volatility of the residuals

generated by Equation (15).

Expected inflation is calibrated to match median one-year ahead inflation projections

from the Survey of Professional Forecasters. The persistence and long-run mean of expected

inflation are estimated using ordinary least squares on relationship in Equation (17). Ex-

pected inflation volatility is then set to match the volatility of the estimated residuals.

Finally, the covariance matrix of the shocks is calibrated to match the pairwise correla-

tions between the shocks in the data. Bπ is equal to realized inflation less expected inflation.

Bz is calibrated using Equation (15) assuming that no disasters realize in sample.

E Evidence from other countries

We start by understanding whether a rise in the probability of disaster is an attractive

explanation for the decline in government bond yields in these other countries with results

presented in Table E.2. In all three calibrations, we see that both the discount factor β

and the probability of disaster must rise substantially in order to match the data. The

discount factor rises by 1.8 pp in the United Kingdom, 0.4 pp in Japan, and 1.7 pp in the

other countries. Similarly, the probability of disaster rises from 1.7% to 6.5% in the United

Kingdom, 0.8% to 2.7% in Japan, and 1.1% to 4.2% for the other countries. This is consistent
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Table D.1: Parameters for generalized endowment economy

This table shows additional parameters for the generalized endowment model which includes
rare disasters and inflationary default (see also Table 3). Corr(π, q) and Corr(C, z) refer
to the correlation between shocks to realized inflation and non-disaster expected inflation q
and log consumption growth and the consumption-dividend ratio z respectively. q represents
expected inflation outside of disasters. Parameters are in annual terms.

Parameter Value Source

Preference parameters

Risk aversion γ 5 Calibrated

EIS ψ 1 Calibrated

Consumption process

Disaster probability p 0.0225 Calibrated

Disaster magnitude η 0.30 Calibrated

Consumption shock volatility σC 0.0178 FRED: A794RX0Q048SBEA

Dividend claim process

Average consumption-dividend ratio z̄ 5.072 FRED: PCE and Shiller

Persistence of consumption-dividend ratio ρz 0.422 FRED: PCE and Shiller

Volatility of consumption-dividend ratio σz 0.4106 De la O and Myers (2021)

Leverage ξ 2 Calibrated

Inflation process

Persistence of expected inflation ρq 0.846 Survey of Professional Forecasters

Volatility of expected inflation σq 0.0028 Survey of Professional Forecasters

Volatility of expected inflation σπ 0.0072 FRED

Covariances

Corr(π, q) 0.521 Various

Corr(C, z) -0.497 Various

with the results in the United States.

Next, we seek to understand whether the model with disasters and inflationary default

can match the evidence from abroad. Here, we find quite similar results to those in the United

States. The results are presented in Table E.3. Again, crucially, we see that substantially
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smaller rises in the discount factor β are needed to match the data. Instead, small declines in

the risk of inflationary default are sufficient. Again, this is quite consistent with the results

in the United States.

F Government debt and inflationary default risk

Another question that arises from our model is how it can be possible that sovereign default

risk could go down when government debt-to-GDP has risen so much over the same period.

To answer this question, we use the fiscal theory of the price level (Cochrane, 2023) to

endogenize the inflation process in terms of fiscal policy. This allows us to show how the risk

of sovereign default (the parameter λ) and the present value of government debt depend on

beliefs about future surpluses.

Suppose the government runs surpluses St = Tt − Gt and issues one-period debt with

total nominal value Q$
tBt. The government budget constraint is

Bt−1 = ΠtSt +Q$
tBt. (F.1)

The left hand side represents the face value of bonds due to investors (each bond issued

at t − 1 promises $1 at time t. The government fulfills this obligation by a combination

of paying off the debt (the term ΠtSt, representing the nominal value of the surplus) and

issuing new debt Bt at price Q
$
t . Iterating this constraint forward and taking expectations

implies the present-value relation

Bt−1

Πt

= Et

[
∞∑
j=0

Mt+jSt+j

]
. (F.2)

The price level Πt, and hence the inflation process, is determined by this equation.

For convenience, let us write the surplus as the product of current consumption and the
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surplus-consumption ratio,

St = stCt. (F.3)

To highlight the importance of disaster default in our model, we assume that the surplus-

consumption ratio follows a three-state process that depends on the occurrence of a disaster:

st =


s̄ if χt−1 = χt = 0,

s̄− s− if χt−1 = 0 and χt = η,

s̄+ s+ if χt−1 = η.

(F.4)

In non-disaster times, the government raises a constant fraction s̄ of the endowment as

surpluses. When a disaster occurs, the government runs a deficit s−, but commits to repaying

that deficit at a rate s+ thereafter.32 The higher the disaster-contingent repayment rate s+,

the less the government will need to default by inflation in a disaster.

As in our main model, assume the household has Epstein-Zin utility with unit EIS and

risk aversion γ. Using the SDF derived in our production model, we can rewrite the valuation

equation (F.2) in terms of the debt-consumption (i.e., debt-to-GDP) ratio recursively as:

Bt−1

ΠtCt

= st + Et[R
1−γ
W,t+1]

−1Et

[
R−γ

W,t+1

Ct+1

Ct

Bt

Πt+1Ct+1

]
. (F.5)

Substituting in the wealth return RW,t+1 = β−1Ct+1/Ct and letting bt ≡ Bt−1/(ΠtCt), this

becomes

bt = st + βEt

[(
Ct+1

Ct

)1−γ
]−1

Et

[(
Ct+1

Ct

)1−γ

bt+1

]
, (F.6)

32Of course, the idea that the government pays everything back in just one period is a stylized represen-
tation of the more likely reality that it promises delayed and gradual repayment — what Cochrane (2023)
calls an “s-shaped” surplus process.
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or, substituting in the endowment process,

bt = st + βEt

[
(1− χt+1)

1−γ

(1− p) + p(1− η)1−γ
bt+1

]
. (F.7)

Now, because st = s(χt−1, χt), we have a solution of the form bt = b(χt−1, χt), solving the

system of equations

b(χt−1, χt) = s(χt−1, χt) + βEt[p̃b(χt, η) + (1− p̃)b(χt, 0)], (F.8)

where

p̃ ≡ p(1− η)1−γ

(1− p) + p(1− η)1−γ
(F.9)

is a risk-adjusted disaster probability (equal to the physical probability p if γ = 1).

Now let us use this solution to determine the equilibrium inflation process. Suppose there

have been no recent disasters, so bt = b(0, 0). In this case, we have

b(0, 0) =
1

1− β
s̄+

β2p̃

1− β
s+ − βp̃(1− βp̃)

1− β
s−. (F.10)

Next period’s debt-to-consumption will either remain at b(0, 0) or become

b(0, η) =
1

1− β
s̄+

β2p̃+ β(1− β)

1− β
s+ − (1− β(1− p̃))(1− βp̃)

1− β
s− (F.11)

if there is a disaster. Thus, we can write

b(0, η) = b(0, 0) + βs+ − (1− βp̃)s−, (F.12)

or, in terms of the disaster shock,

bt+1 = b(0, 0)−
[
(1− βp̃)s− − βs+

] χt+1

η
. (F.13)

78



To solve for the inflation rate, note that the flow budget constraint can be rewritten

Q$
t

Πt+1

Πt

=

(
Ct+1

Ct

)−1
bt − st
bt+1

. (F.14)

Now conjecture that there exists a constant λ and a deterministic process µπt such that

Πt+1

Πt

= eµπt(1− λχt+1)
−1. (F.15)

Substituting this conjecture in (note that Q$
t = e−µπt−yb) and collecting disaster terms implies

(1− λχt+1) = (1− χt+1)

(
1− (1− βp̃)s− − βs+

ηb(0, 0)
χt+1

)
, (F.16)

Expanding the right-hand side and using the fact that χ2
t+1 = ηχt+1, this implies

(1− λχt+1) =

(
1−

(
1−

(
1− η

η

)(
βs+ − (1− βp̃)s−

b(0, 0)

))
χt+1

)
, (F.17)

or, equivalently, that

λ = 1−
(
1− η

η

)(
βs+ − (1− βp̃)s−

b(0, 0)

)
. (F.18)

Finally, noting that (F.10) implies

βs+ − (1− βp̃)s− =
(1− β)b(0, 0)− s̄

βp̃
, (F.19)

we can write λ in terms of the debt-to-GDP ratio b(0, 0):

λ =

(
1−

(
1− η

η

)
1− β

βp̃

)
+

(
1− η

η

)
1

βp̃

s̄

b(0, 0)
. (F.20)

For any set of parameters, the default size λ is inversely related to the debt-to-GDP ratio.

Intuitively, this is because the government’s debt is more valuable when investors believe
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that the risk of default is lower.

All else equal, the debt-to-GDP ratio b is decreasing in the size of the disaster deficit

s−, but increasing in the repayment rate s+. By (F.20), the magnitude of the inflation in

a disaster state λ is therefore increasing in s− and decreasing in s+. Figure F.2 plots a

comparative static for the equilibrium default size ηλ and the debt-to-GDP ratio bt as a

function of the expected repayment rate s+. Panel A shows that, as expected repayment s+

increases, ηλ falls. This suggests one possible explanation for the decline in λ we estimate in

the data: growing confidence that the government will pay back investors should a disaster

occur. Importantly, what matters for this fiscal-theoretic view of the price level is beliefs

about future surpluses. In particular, what matters here is not so much the normal-times

surplus rate s̄, but beliefs about the surplus rate s+ following disasters. Data on beliefs about

disaster-contingent repayment are not available to directly test this hypothesis, but Jiang

et al. (2024) do present evidence that expectations of future surpluses in the twenty-first

century were high, and indeed much higher than the surpluses that actually materialized,

consistent with this story.

Figure F.2: Government debt and disaster inflation in the fiscal theory

Finally, to address the question of how high debt levels could co-occur with low default
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risk ηλ, Panel B plots debt-to-GDP both in the non-disaster (b(0, 0)) and disaster (b(0, η))

states as a function s+. In both states, the value of debt-to-GDP is increasing in the expected

repayment rate for two reasons. First is a cashflow effect, whereby higher repayment means

more surpluses on average. Second is a risk premium effect, whereby higher repayment

means a larger increase in the value of government debt in the disaster state (the blue

line), rendering government debt a hedge against disaster risk and increasing its value ex

ante. Notably, the increased fiscal capacity from high s+ could allow the government some

flexibility to reduce its normal-times surplus rate s̄, which could also help explain how debt

continued to rise amid unexpectedly low surpluses.

G Production model

G.1 Solution to the no-inventory case

Consider the model in Section 4.1. The agent maximizes (26), subject to (25). Conjecture

that

V (Wt) = νWt, (G.1)

for some constant ν > 0. Substituting this conjecture into (26), with RW,t+1 ≡ Rf,t+1 +

αt(RK,t+1 −Rf,t+1) implies

(1− β) log ν + logWt = max
Ct,αt

{
(1− β) logCt + β log (Wt − Ct) +

β

1− γ
log
(
Et

[
R1−γ

W,t+1

])}
.

(G.2)

At the optimum. the derivative of the right-hand side with respect to Ct equals zero. Thus:

1− β

Ct

− β

Wt − Ct

= 0
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yielding the result Ct/Wt = 1− β. Setting the derivative of the right hand side with respect

to α equal to zero yields (32).

G.2 Solution to the general case

The agent can invest in an inventory asset with net return rI = 0, a riskfree bond with

net return rf,t+1, and a risky capital asset with net return rK,t+1. Let rj,t+1, j ∈ J =

{I, f,K}, represent net returns, and let αj,t denote the percent allocation of savings to

asset j. Note that, in our setting with a binary shock χt+1, markets are complete, so the

agent will be able to construct any state-contingent portfolio return ri,t+1. Inventory and

capital are the only securities in positive net supply; furthermore, we restrict inventory to

be in non-negative supply (It ≥ 0). It follows from this setup that the return on wealth

RW,t+1 =
∑

j∈J αj,t(1 + rj,t+1), where
∑

j∈J αj,t = 1.

Suppose that the agent has Epstein-Zin utility with unit EIS. The agent’s optimization

problem is therefore

max
Ct,{αj,t}j∈J

(
C1−β

t

(
Et

[
V (Wt+1)

1−γ
]) β

1−γ
)
, (G.3)

subject to the dynamic budget constraint

Wt+1 = (Wt − Ct)RW,t+1 = (Wt − Ct)
∑
j∈J

αj,t(1 + rj,t+1), (G.4)

the portfolio weight restriction ∑
j∈J

αj,t = 1, (G.5)

and the inventory non-negativity constraint

αI,t ≥ 0. (G.6)

Let ζt and ξt denote the Lagrange multipliers on the constraints (G.5) and (G.6), respectively.
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Substituting (G.1) and the budget constraint (G.4) into (G.3), then taking logs, we again

obtain (G.2) and the identical first-order condition for consumption as above. The first-order

condition with respect to asset allocation αj,t, j ̸= I, is

βEt

[
R1−γ

W,t+1

]−1 Et

[
R−γ

W,t+1(1 + rj,t+1)
]
= ζt, (G.7)

and the first-order condition with respect to the inventory allocation αI,t is

βEt

[
R1−γ

W,t+1

]−1 Et

[
R−γ

W,t+1

]
+ ξt = ζt. (G.8)

Multiply both sides of (G.7) by αj,t, take the sum over j ∈ J \ {I}, and substitute in (G.8)

to see that

ζt = β + ξtαI,t = β, (G.9)

by complementary slackness. This implies the Euler equation for gross returns

Et

[
R1−γ

W,t+1

]−1 Et

[
R−γ

W,t+1Rj,t+1

]
= 1 (G.10)

and the Euler equation for inventory

Et

[
R1−γ

W,t+1

]−1 Et

[
R−γ

W,t+1

]
+
ξt
β

= 1. (G.11)

Note the market clearing condition αI,t = 1 − αK,t, where αK,t is simply denoted αt in our

setup in the main text. We thus have that ξt > 0 if and only if αt < 1.

We now show formally that inventory imposes a zero lower bound. Throughout, we

assume that the bond is in zero net supply.

Lemma 1. If αt < 1, then the gross real riskfree rate Rf,t+1 = 1. If αt = 1, then Rf,t+1 ≥ 1

and is equal to the real riskfree rate in a no-inventory economy R∗
f,t+1.
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Proof. If αI,t > 0, then ξt = 0 and (G.10) and (G.8) combine to give us Rf,t+1 = 1. If

αI,t = 0, then ξt ≥ 0 and

Rf,t+1 =
β

β − ξt
, (G.12)

which is greater than or equal to 1. Moreover, if αI,t = 0, then market clearing implies

RW,t+1 = RK,t+1 and the Euler equation (G.10) yields

Rf,t+1 = Et

[
R1−γ

K,t+1

]
Et

[
R−γ

K,t+1

]−1
, (G.13)

which is the same as the riskfree rate R∗
f,t+1 in the no-inventory economy.

We next show that the unconstrained riskfree rate determines α.

Theorem 1. If the unconstrained gross riskfree rate R∗
f,t+1 < 1, then αt < 1 and the con-

strained riskfree rate Rf,t+1 = 1. If R∗
f,t+1 ≥ 1, then αt = 1 and the equilibrium is as in a

standard no-inventory production economy with Rf,t+1 = R∗
f,t+1.

Proof. We will prove the theorem by contradiction using Lemma 1.

Suppose R∗
f,t+1 < 1 and αI,t = 0. Then Rf,t+1 = R∗

f,t+1 < 1, which contradicts Lemma 1.

It must therefore be the case that R∗
f,t+1 < 1 implies αI,t > 0, which implies Rf,t+1 = 1.

Now suppose R∗
f,t+1 > 1 and αI,t > 0. Then Rf,t+1 = 1 < R∗

f,t+1, which contradicts

Lemma 1. Moreover, in the knife-edge case R∗
f,t+1 = 1, the equilibrium conditions (G.10)

and (G.8) imply ξt = 0, which implies that αI,t = 0 and Rf,t+1 = R∗
f,t+1 = 1. Thus, it must

be that R∗
f,t+1 ≥ 1 implies αI,t = 0, which implies Rf,t+1 = R∗

f,t+1 ≥ 1.

We conjecture that the price-dividend ratio depends only on the current state χt (i.e.,

whether the disaster occurred or not). The intuition for this is that output growth Yt+1/Yt

is a function of χt only. Thus,

1 = Et

[
R1−γ

W,t+1

]−1 Et

[
R−γ

W,t+1

(
κY (χt+1) + 1

κY (χt)

)(
Yt+1

Yt

)]
. (G.14)
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This implies that we have two equations, one for the non-disaster state,

κY (0) = β̂

[
(1− p)(1 + αrK,0)

1−γ(κY (0) + 1)

+ p(1 + αrK,η)
−γ(κY (η) + 1)(1− η)(1 + αrK,0)

]
, (G.15)

and one for the disaster state,

κY (η) = β̂

[
(1− p)(1 + αrK,0)

−γ(κY (0) + 1)(1− η)−1(1 + αrK,η)

+ p(1 + αrK,η)
1−γ(κY (η) + 1)

]
. (G.16)

In these equations, β̂ ≡ β

[
(1− p)(1+αrK,0)

1−γ + p(1+αrK,η)
1−γ

]−1

, rK,0 ≡ (1− δ+A)− 1,

and rK,η ≡ (1− δ +A)(1− η)− 1. The solution to this system is as stated in the main text

(after defining the weights ν).

Although the price-dividend ratio is state-dependent when the agent chooses to hold

inventory, the risk premium is not. The risk premium at time t when the agent holds

inventory is given by logEt[R
Y
t+1]− logRf , for the expected return on the output claim

Et[RY,t+1] = Et

[(
κY (χt+1) + 1

κY (χt)

)(
Yt+1

Yt

)]
. (G.17)

If the expected return on the output claim is the same across states, then so is the risk

premium. In the no-disaster state, the expected return on the output claim is

Et[RY,t+1|χt = 0] =

(
(1− p)κY (0) + pκY (η) + 1

κY (0)

)
×(

β(1− pη) (α(1− δ + A) + 1− α)

)
(G.18)
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and in the disaster state by

Et[RY,t+1|χt = η] =

(
(1− p)κY (0) + pκY (η) + 1

κY (η)

)
×(

β(1− pη)

(
α(1− δ + A) +

(
1− α

1− η

)))
. (G.19)

Examining the two expressions, we see that the expected return in both states are the same

if and only if

κY (η)(1− η)

(
α(1− δ + A) + 1− α

)
= κY (0)

(
α(1− δ + A)(1− η) + 1− α

)
.

The terms inside the parentheses can be written so that

κY (η)(1− η)(1 + αrK,0) = κY (0)(1 + αrK,η),

which is true if we substitute in the expressions for κY (χt). This implies that, while the

price-dividend ratio is time-varying, the risk premium is not.
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Table E.2: Disaster model calibrated to other countries

This table shows parameters necessary to match the data, assuming an endowment economy with rare
disasters. We take average consumption growth from the data in each sample. We calibrate the discount
factor β and the probability of disaster p to match the average price-dividend ratio and the average inflation-
adjusted Treasury bill, assuming no disasters. We do this for the United Kingdom, Japan, and all other
countries present in the Jorda-Schularick-Taylor Macrohistory Database. Parameters and yields are in annual
terms.

Values

Parameter 1984–2000 2001–2021

Panel A: United Kingdom calibration

Data:

Price-dividend ratio κ 26.68 29.29

Inflation-adjusted Treasury yield yb 0.0503 0.0003

Average consumption growth µ 0.0296 0.0172

Model:

Discount factor β 0.953 0.971

Probability of disaster p 0.0167 0.0648

Panel B: Japan calibration

Data:

Price-dividend ratio κ 140.06 63.79

Inflation-adjusted Treasury yield yb 0.0240 -0.0007

Average consumption growth µ 0.0254 0.0083

Model:

Discount factor β 0.982 0.986

Probability of disaster p 0.0084 0.0267

Panel C: All other countries calibration

Data:

Price-dividend ratio κ 41.57 47.58

Inflation-adjusted Treasury yield yb 0.0429 -0.0012

Average consumption growth µ 0.0298 0.0137

Model:

Discount factor β 0.964 0.981

Probability of disaster p 0.0106 0.0416
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Table E.3: Inflationary default model calibrated to other countries

This table shows parameters necessary to match the data, assuming an endowment economy with rare
disasters and inflationary default. We take average consumption growth from the data in each sample. We
calibrate the discount factor β and the decline in bond value λη to match the average price-dividend ratio
and the average inflation-adjusted Treasury bill, assuming no disasters. We do this for the United Kingdom,
Japan, and all other countries present in the Jorda-Schularick-Taylor Macrohistory Database. We assume
the disaster probability equals 2.25%, its benchmark value in Table 1. Parameters and yields are in annual
terms.

Values

Parameter 1984–2000 2001–2021

Panel A: United Kingdom calibration

Data:

Price-dividend ratio κ 26.68 29.29

Inflation-adjusted Treasury yield yb 0.0503 0.0003

Average consumption growth µ 0.0296 0.0172

Model:

Discount factor β 0.964 0.967

Fraction of bond value lost λη 0.170 -0.113

Panel B: Japan calibration

Data:

Price-dividend ratio κ 140.06 63.79

Inflation-adjusted Treasury yield yb 0.0240 -0.0007

Average consumption growth µ 0.0254 0.0083

Model:

Discount factor β 0.993 0.985

Fraction of bond value lost λη 0.232 0.101

Panel C: All other countries calibration

Data:

Price-dividend ratio κ 41.57 47.58

Inflation-adjusted Treasury yield yb 0.0429 -0.0012

Average consumption growth µ 0.0298 0.0137

Model:

Discount factor β 0.977 0.979

Fraction of bond value lost λη 0.215 0.009
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